Stationary quantum entanglement between a massive mechanical membrane and a low frequency LC circuit

被引:16
作者
Li, Jie [1 ]
Groblacher, Simon [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
quantum entanglement; quantum optics; cavity optomechanics; electromechanics; THERMAL AGITATION; MOTION; CRITERION; MICROWAVE;
D O I
10.1088/1367-2630/ab90d2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study electro-mechanical entanglement in a system where a massive membrane is capacitively coupled to alow frequency LCresonator. In opto- and electro-mechanics, the entanglement between a megahertz (MHz) mechanical resonator and a gigahertz (GHz) microwave LC resonator has been widely and well explored, and recently experimentally demonstrated. Typically, coupling is realized through a radiation pressure-like interaction, and entanglement is generated by adopting an appropriate microwave drive. Through this approach it is however not evident how to create entanglement in the case where both the mechanical and LC oscillators are of low frequency, e.g., around 1 MHz. Here we provide an effective approach to entangling two low-frequency resonators by further coupling the membrane to an optical cavity. The cavity is strongly driven by a red-detuned laser, sequentially cooling the mechanical and electrical modes, which results in stationary electro-mechanical entanglement at experimentally achievable temperatures. The entanglement directly originates from the electro-mechanical coupling itself and due to its quantum nature will allow testing quantum theories at a more macroscopic scale than currently possible.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Entanglement in continuous-variable systems: recent advances and current perspectives [J].
Adesso, Gerardo ;
Illuminati, Fabrizio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :7821-7880
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[5]   Stationary entangled radiation from micromechanical motion [J].
Barzanjeh, S. ;
Redchenko, E. S. ;
Peruzzo, M. ;
Wulf, M. ;
Lewis, D. P. ;
Arnold, G. ;
Fink, J. M. .
NATURE, 2019, 570 (7762) :480-+
[6]   Entangling optical and microwave cavity modes by means of a nanomechanical resonator [J].
Barzanjeh, Sh. ;
Vitali, D. ;
Tombesi, P. ;
Milburn, G. J. .
PHYSICAL REVIEW A, 2011, 84 (04)
[7]   Models of wave-function collapse, underlying theories, and experimental tests [J].
Bassi, Angelo ;
Lochan, Kinjalk ;
Satin, Seema ;
Singh, Tejinder P. ;
Ulbricht, Hendrik .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :471-527
[8]   QUANTUM LANGEVIN EQUATION [J].
BENGURIA, R ;
KAC, M .
PHYSICAL REVIEW LETTERS, 1981, 46 (01) :1-4
[9]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[10]   Macroscopic quantum mechanics: theory and experimental concepts of optomechanics [J].
Chen, Yanbei .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)