REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES

被引:0
作者
Shen Guangjun [1 ,2 ]
Chen Chao [1 ]
Yam Litan [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
关键词
sub-fractional Brownian motion; Malliavin calculus; sub-fractional Bessel processes; chaos expansion; BROWNIAN-MOTION; RESPECT; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = {(S-t(1), ..., S-t(d))}t >= 0 denote a d-dimensional sub-fractional Brownian motion with index H >= 1/2. In this paper we study some properties of the process X of the form X-t :=Sigma(d)(i=1) integral(t)(0) S-s(i)/R(s)dS(s)(i), d >= 1, where R-t = root(s(t)(1))(2) + ... + (s(t)(d))(2) is the sub-fractional Bessel process.
引用
收藏
页码:1860 / 1876
页数:17
相关论文
共 15 条
[11]  
Tudor C., 2007, STOCHASTICS, V79, P431, DOI DOI 10.1080/17442500601100331
[12]   Inner product spaces of integrands associated to subfractional Brownian motion [J].
Tudor, Constantin .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :2201-2209
[13]  
Yan L., 2011, COMMUN STOCH ANAL, V5, P9, DOI [10.31390/cosa.5.1.09, DOI 10.31390/COSA.5.1.09]
[14]   On the collision local time of sub-fractional Brownian motions [J].
Yan, Litan ;
Shen, Guangjun .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (5-6) :296-308
[15]  
YOR M, 1997, SOME ASPECTS BROWN 2