CONVERGENCE OF THE CENTERED MAXIMUM OF LOG-CORRELATED GAUSSIAN FIELDS

被引:41
作者
Ding, Jian [1 ]
Roy, Rishideep [2 ]
Zeitouni, Ofer [3 ,4 ]
机构
[1] Univ Chicago, Dept Stat, 5747 S Ellis Ave,Jones 322, Chicago, IL 60637 USA
[2] Indian Inst Management Bangalore, Decis Sci & Informat Syst, Bannerghatta Rd, Bangalore 560076, Karnataka, India
[3] Weizmann Inst Sci, Dept Math, POB 26, IL-76100 Rehovot, Israel
[4] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
以色列科学基金会;
关键词
Gaussian processes; extremes values; log-correlated fields; LAW;
D O I
10.1214/16-AOP1152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the centered maximum of a sequence of logarithmically correlated Gaussian fields in any dimension converges in distribution, under the assumption that the covariances of the fields converge in a suitable sense. We identify the limit as a randomly shifted Gumbel distribution, and characterize the random shift as the limit in distribution of a sequence of random variables, reminiscent of the derivative martingale in the theory of branching random walk and Gaussian chaos. We also discuss applications of the main convergence theorem and discuss examples that show that for logarithmically correlated fields; some additional structural assumptions of the type we make are needed for convergence of the centered maximum.
引用
收藏
页码:3886 / 3928
页数:43
相关论文
共 29 条
[1]  
ACOSTA J. E., 2016, THESIS
[2]   Tightness of the recentered maximum of log-correlated Gaussian fields [J].
Acosta, Javier .
ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 :1-25
[3]   CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK [J].
Aidekon, Elie .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1362-1426
[4]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[5]   POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1446-1481
[6]   Limit theorems for the minimal position in a branching random walk with independent logconcave displacements [J].
Bachmann, M .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) :159-176
[7]  
BISKUP M., 2014, ARXIV E PRINTS
[8]  
BISKUP M., 2016, ARXIV E PRINTS
[9]   Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field [J].
Biskup, Marek ;
Louidor, Oren .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (01) :271-304
[10]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1