Sharp threshold of global existence for the generalized Zakharov system with three-dimensional magnetic field in the subsonic limit

被引:0
作者
Shuai, Kun [1 ]
Huang, Juan [2 ]
Pan, Zhigang [3 ]
机构
[1] Univ Elect Sci & Technol China, ChengDu Coll, Chengdu 610054, Peoples R China
[2] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu, Peoples R China
[3] Southwest Jiaotong Univ, Sch Math, Chengdu, Peoples R China
基金
美国国家科学基金会;
关键词
Zakharov system; magnetic field; subsonic limit; blowup of a solution; global existence; NONLINEAR SCHRODINGER-EQUATIONS; KLEIN-GORDON EQUATIONS; SINGULAR SOLUTIONS; PLASMA;
D O I
10.1134/S0001434615030165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the Zakharov system with three dimensional magnetic field in the subsonic limit, which describes the spontaneous generation of a magnetic field in cold plasma. In fact, we will investigate the effect of the magnetic field term on the equations. By using variational calculus, we obtain the threshold of global existence and blowup of the solution to the equations, which will be more complicated and requires more skill.
引用
收藏
页码:450 / 467
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1959, Estratto Ann. Sc. Norm. Super. Pisa
[2]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[3]  
Cazenave T., 2003, SEMILINEAR SCHRODING, V10
[4]   New singular solutions of the nonlinear Schrodinger equation [J].
Fibich, G ;
Gavisha, N ;
Wang, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 211 (3-4) :193-220
[5]   Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma [J].
Gan, Zaihui ;
Guo, Boling ;
Han, Lijia ;
Zhang, Jian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2508-2528
[6]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[7]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[9]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[10]   SPONTANEOUS EXCITATION OF MAGNETIC-FIELDS AND COLLAPSE DYNAMICS IN A LANGMUIR PLASMA [J].
KONO, M ;
SKORIC, MM ;
TERHAAR, D .
JOURNAL OF PLASMA PHYSICS, 1981, 26 (AUG) :123-146