A problem in last-passage percolation

被引:3
作者
Kesten, Harry [1 ]
Sidoravicius, Vladas [2 ,3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] CWI, NL-1098 XG Amsterdam, Netherlands
[3] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Oriented first passage percolation; directed polymer; free energy;
D O I
10.1214/09-BJPS032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X (nu), nu is an element of Z(d) x Z(+)} be an i.i.d. family of random variables s nu ch that P {X (nu) = e(b)} = I - P {X (nu) = 1} = p for some b > 0. We consider paths pi subset of Z(d) x Z(+) starting at the origin and with the last coordinate increasing along the path, and of length n. Define for such paths W(pi) = number of vertices pi(i), 1 <= i <= n, with X(pi(i)) = e(b). Finally, let N-n(alpha) = number of paths pi of length n starting at pi(0) = 0 and with W(pi) >= alpha n. We establish several properties of lim(n ->infinity)[N-n](1/n).
引用
收藏
页码:300 / 320
页数:21
相关论文
共 10 条
  • [1] CHERNOFFS THEOREM IN BRANCHING RANDOM-WALK
    BIGGINS, JD
    [J]. JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) : 630 - 636
  • [2] The number of open paths in an oriented ρ-percolation model
    Comets, Francis
    Popov, Serguei
    Vachkovskaia, Marina
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (02) : 357 - 379
  • [3] Cranston M., 2005, ACTA MATH U COMENIAN, V71, P163
  • [4] Durrett R., 1996, PROBABILITY THEORY E
  • [5] GREEDY LATTICE ANIMALS II: LINEAR GROWTH
    Gandolfi, Alberto
    Kesten, Harry
    [J]. ANNALS OF APPLIED PROBABILITY, 1994, 4 (01) : 76 - 107
  • [6] POSTULATES FOR SUBADDITIVE PROCESSES
    HAMMERSLEY, JM
    [J]. ANNALS OF PROBABILITY, 1974, 2 (04) : 652 - 680
  • [7] Lee S., 1994, THESIS CORNELL U ITH
  • [8] EVIDENCE FOR A NEW PHASE IN THE DOMANY-KINZEL CELLULAR AUTOMATON
    MARTINS, ML
    DERESENDE, HFV
    TSALLIS, C
    DEMAGALHAES, ACN
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (15) : 2045 - 2047
  • [9] Ruzsa Imre., 1988, Algebraic Probability Theory
  • [10] SMYTHE RT, 1978, LECT NOTES MATH, V671