ON THE ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

被引:0
作者
Khaochim, Narissara [1 ]
Pongsriiam, Prapanpong [1 ]
机构
[1] Silpakorn Univ, Dept Math, Fac Sci, Amphoe Muang 73000, Nakhon Pathom, Thailand
关键词
Fibonacci number; least common multiple; the order of appearance; LUCAS-NUMBERS; POWERS; DIVISIBILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-n be the nth Fibonacci number. For each positive integer m, the order of appearance of m, denoted by z(m), is the smallest positive integer k such that m divides F-k. Recently, D. Marques has obtained a formula for z(FnFn+1), z(FnFn+ F-1(n +2)), and z(FnFn+1Fn+2Fn+3). In this paper, we extend Marques' result to the case z(FnFn +1 ... Fn+k), for 4 <= k <= 6.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 29 条
[1]  
ANDREASSIAN A, 1974, FIBONACCI QUART, V12, P51
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]  
Benjamin A., 2013, MATH MAG, V76, P182
[4]  
Farhi B, 2009, P AM MATH SOC, V137, P1933
[5]  
Halton J. H., 1996, FIBONACCI QUART, V4, P217
[6]  
Kalman D., 2003, MATH MAG, V76, P167, DOI DOI 10.2307/3219318
[7]  
Khaochim N, 2018, ACTA MATH UNIV COMEN, V87, P277
[8]  
Koshy T., 2001, Fibonacci and Lucas Numbers with Applications
[9]  
LENGYEL T, 1995, FIBONACCI QUART, V33, P234
[10]  
Marques D, 2012, FIBONACCI QUART, V50, P346