On the asymptotic behavior of a linear viscoelastic fluid

被引:4
作者
Fabrizio, Mauro [1 ]
Lazzari, Barbara [1 ]
Nibbi, Roberta [1 ]
机构
[1] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
asymptotic behavior of solutions; viscoelastic fluids; long-time behavior of solutions; GENERAL DECAY; FREE-ENERGIES;
D O I
10.1002/mma.1602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of an incompressible viscoelastic fluid and prove that the temporal decay of the energy is similar to one of the memory kernel. The innovative aspect of this research lies in considering the evolutive problem with non-zero external sources and/or initial histories. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 14 条
[1]   Free energies and asymptotic behaviour for incompressible viscoelastic fluids [J].
Amendola, G. ;
Fabrizio, M. ;
Golden, J. M. ;
Lazzari, B. .
APPLICABLE ANALYSIS, 2009, 88 (06) :789-805
[2]   The minimum free energy for incompressible viscoelastic fluids [J].
Amendola, Giovambattista .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (18) :2201-2223
[3]   ON DETERMINATION OF FREE ENERGY IN LINEAR VISCOELASTIC SOLIDS [J].
BREUER, S ;
ONAT, ET .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1964, 15 (02) :184-&
[4]  
BREUER S, 1964, Z ANGEW MATH PHYS, V15, P12
[5]   The concept of a minimal state in viscoelasticity: New free energies and applications to PDEs [J].
Deseri, L ;
Fabrizio, M ;
Golden, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (01) :43-96
[6]   Maximum and minimum free energies for a linear viscoelastic material [J].
Fabrizio, M ;
Golden, JM .
QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (02) :341-381
[7]  
Fabrizio M., 1993, DIFFERENTIAL INTEGRA, V6, P491
[8]  
Fabrizio M, 2011, ARXIVSUBMIT0231316MA
[9]   General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping [J].
Guesmia, Aissa ;
Messaoudi, Salim A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (16) :2102-2122
[10]   General decay of energy for a viscoelastic equation with nonlinear damping [J].
Han, Xiaosen ;
Wang, Mingxin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) :346-358