Constrained quadratic state feedback control of discrete-time Markovian jump linear systems

被引:121
作者
Costa, OLV [1 ]
Assumpcao, EO
Boukas, EK
Marques, RP
机构
[1] Univ Sao Paulo, Dept Elect Engn, BR-05508900 Sao Paulo, SP, Brazil
[2] Ecole Polytech, Dept Mech Engn, Montreal, PQ H3C 3A7, Canada
基金
巴西圣保罗研究基金会;
关键词
quadratic control; constraints; jump processes; Markov parameters; convex programming;
D O I
10.1016/S0005-1098(98)00202-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the quadratic optimal control problem of a discrete-time Markovian jump linear system, subject to constraints on the state and control variables. It is desired to find a state feedback controller, which may also depend on the jump variable, that minimizes a quadratic cost and satisfies some upper bounds on the norms of some random variables, related to the state and control variables of the system. The transition probability of the Markov chain and initial condition of the system may belong to appropriate convex sets. We obtain an approximation for the optimal solution of this problem in terms of linear matrices inequalities, so that convex programming can be used for numerical calculations. Examples are presented to illustrate the usefulness of the developed results. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 24 条
[1]   FEEDBACK-CONTROL OF A CLASS OF LINEAR DISCRETE SYSTEMS WITH JUMP PARAMETERS AND QUADRATIC COST CRITERIA [J].
BLAIR, WP ;
SWORDER, DD .
INTERNATIONAL JOURNAL OF CONTROL, 1975, 21 (05) :833-841
[2]  
Boyd S, 1994, Linear Matrix Inequalities in System and Control Theory, V42, P434
[3]  
CHIZECK HJ, 1986, INT J CONTROL, V43, P197
[4]   A convex programming approach to H-2 control of discrete-time Markovian jump linear systems [J].
Costa, OLV ;
DoVal, JBR ;
Geromel, JC .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (04) :557-579
[5]   DISCRETE-TIME LQ-OPTIMAL CONTROL-PROBLEMS FOR INFINITE MARKOV JUMP PARAMETER-SYSTEMS [J].
COSTA, OLV ;
FRAGOSO, MD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (12) :2076-2088
[6]   DISCRETE-TIME COUPLED RICCATI-EQUATIONS FOR SYSTEMS WITH MARKOV SWITCHING PARAMETERS [J].
COSTA, OLV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (01) :197-216
[7]   STABILITY RESULTS FOR DISCRETE-TIME LINEAR-SYSTEMS WITH MARKOVIAN JUMPING PARAMETERS [J].
COSTA, OLV ;
FRAGOSO, MD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :154-178
[8]  
ElGhaoui L, 1996, INT J ROBUST NONLIN, V6, P1015, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<1015::AID-RNC266>3.0.CO
[9]  
2-0
[10]   STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS [J].
FENG, XB ;
LOPARO, KA ;
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :38-53