Stochastic ordering of minima and maxima from heterogeneous bivariate Birnbaum-Saunders random vectors

被引:5
作者
Fang, Longxiang [1 ]
Zhu, Xiaojun [2 ]
Balakrishnan, N. [3 ]
机构
[1] Anhui Normal Univ, Dept Math & Comp Sci, Wuhu, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou, Peoples R China
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bivariate Birnbaum-Saunders distribution; bivariate log Birnbaum-Saunders distribution; maxima; minima; majorization; usual stochastic order; LIFE DISTRIBUTIONS; FAMILY;
D O I
10.1080/02331888.2017.1322086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss stochastic comparisons of minima and maxima arising from heterogeneous bivariate Birnbaum-Saunders (BS) random vectors with respect to the usual stochastic order based on vector majorization of parameters. Suppose the bivariate random vectors (X-1, X-2) and (X-1*, X-2*) follow BVBS(alpha(1), beta(1), alpha(2), beta(2),rho) and BVBS(alpha(1)*, beta(1)*, alpha(2)*, beta(2)*,rho) distributions, respectively. Suppose 0 < nu <= 2. We then prove that when alpha(1) = alpha(2) = alpha(1)* = alpha(2)*, (beta(1)*(-1/nu),beta(2)*(-1/nu)) implies X-2: 2* >= st X-1: 2* >= st X-1: 2. These results are subsequently generalized to a wider range of scale parameters. Next, we prove that when beta(1) = beta(2) = beta(1)* = beta(2)*, (1/alpha(1), 1/alpha(2)) >= m (1/alpha(1)*, 1/alpha(2)*) implies X-2: 2 >= st X-2: 2* and X-1: 2 * >= st X-1: 2. Analogous results are then deduced for bivariate log BS distributions as well.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 19 条
[1]   ESTIMATION FOR A FAMILY OF LIFE DISTRIBUTIONS WITH APPLICATIONS TO FATIGUE [J].
BIRNBAUM, ZW ;
SAUNDERS, SC .
JOURNAL OF APPLIED PROBABILITY, 1969, 6 (02) :328-&
[2]   A NEW FAMILY OF LIFE DISTRIBUTIONS [J].
BIRNBAUM, ZW ;
SAUNDERS, SC .
JOURNAL OF APPLIED PROBABILITY, 1969, 6 (02) :319-&
[3]   A new family of life distributions based on the elliptically contoured distributions [J].
Díaz-García, JA ;
Leiva-Sánchez, V .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) :445-457
[4]   Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum-Saunders components [J].
Fang, Longxiang ;
Zhu, Xiaojun ;
Balakrishnan, N. .
STATISTICS & PROBABILITY LETTERS, 2016, 112 :131-136
[5]   Slepian's inequality with respect to majorization [J].
Fang, Longxiang ;
Zhang, Xinsheng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (04) :1107-1118
[6]   On the hazard function of Birnbaum-Saunders distribution and associated inference [J].
Kundu, Debasis ;
Kannan, Nandini ;
Balakrishnan, N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) :2692-2702
[7]  
Kundu D, 2015, STATISTICS-ABINGDON, V49, P900
[8]   Generalized multivariate Birnbaum-Saunders distributions and related inferential issues [J].
Kundu, Debasis ;
Balakrishnan, N. ;
Jamalizadeh, Ahad .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 :230-244
[9]   Bivariate Birnbaum-Saunders distribution and associated inference [J].
Kundu, Debasis ;
Balakrishnan, N. ;
Jamalizadeh, A. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) :113-125
[10]   Lifetime. analysis based on the generalized Birnbaum-Saunders distribution [J].
Leiva, Victor ;
Riquelme, Marco ;
Balakrishnan, N. ;
Sanhueza, Antonio .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :2079-2097