On the stability of the monomial functional equation

被引:65
作者
Lee, Yang-Hi [1 ]
机构
[1] Gongju Natl Univ Educ, Dept Math Educ, Gongju 314711, South Korea
关键词
stability; monomial functional equation;
D O I
10.4134/BKMS.2008.45.2.397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we modify L.Cadariu and V. Radu's result for the stability of the monomial functional equation Sigma(n)(i=0) C-n(i)(-1)(n-i)f(ix+y) - n!f(x) = 0 in the sense of Th. M. Rassias. Also, we investigate the superstability of the monomial functional equation.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 27 条
[1]  
[Anonymous], MATH ITS APPL
[2]  
[Anonymous], CARPATHIAN J MATH
[3]  
[Anonymous], 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis
[4]  
Cholewa P. W., 1984, AEQUATIONES MATH, V27, P76, DOI DOI 10.1007/BF02192660
[5]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[6]  
CZERWIK S., 2002, Functional Equations and Inequalities in Several Variables
[7]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[8]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[9]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34
[10]  
Hyers D. H., 1992, Aequationes Math., V44, P125, DOI [10.1007/BF01830975, DOI 10.1007/BF01830975]