Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

被引:295
|
作者
Xia, Hui [1 ]
Wang, Yu [3 ]
Lin, Jianyi [3 ]
Lu, Li [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
[3] ICES, Singapore 627833, Singapore
来源
NANOSCALE RESEARCH LETTERS | 2012年 / 7卷
关键词
MANGANESE OXIDE NANOFLOWERS; ELECTRODE MATERIALS; NANOTUBE COMPOSITE; PERFORMANCE; ALPHA-MNO2; FABRICATION; ARRAYS; DEPOSITION; MECHANISM; NANORODS;
D O I
10.1186/1556-276X-7-33
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2 center dot 0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m(2)/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors
    Hui Xia
    Yu Wang
    Jianyi Lin
    Li Lu
    Nanoscale Research Letters, 7
  • [2] SYNTHESIS AND CHARACTERIZATION OF CNT/MnO2 NANOCOMPOSITE MATERIAL FOR APPLICATION OF SUPERCAPACITORS MATERIAL
    Subagio, A.
    Priyono
    Pardoyo
    Yudianti, R.
    JURNAL PENDIDIKAN FISIKA INDONESIA-INDONESIAN JOURNAL OF PHYSICS EDUCATION, 2014, 10 (01): : 92 - 103
  • [3] Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors
    Wang, Hongjuan
    Peng, Cheng
    Peng, Feng
    Yu, Hao
    Yang, Jian
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (14): : 1073 - 1078
  • [4] Hydrothermal express synthesis of CNT/MnO2 composite for asymmetric supercapacitor
    Gromadskyi D.G.
    Surface Engineering and Applied Electrochemistry, 2016, 52 (3) : 289 - 299
  • [5] Supercapacitor Behavior of CNT/MnO2 Composite
    Wei, S.
    Kang, W. P.
    Davidson, J. L.
    Rogers, B. R.
    Huang, J. H.
    ADVANCED ORGANIC AND INORGANIC MATERIALS FOR ELECTROCHEMICAL POWER SOURCES, 2010, 28 (08): : 97 - 103
  • [6] γ-MnO2/CNTs Nanocomposite for Supercapacitors
    Huang, Xiangping
    Wang, Zhao
    Zhang, Changyuan
    Wei, Huili
    Feng, Mao
    JOURNAL OF SCIENTIFIC CONFERENCE PROCEEDINGS, VOL 1, NOS. 2 AND 3, 2009, 1 (2-3): : 117 - 120
  • [7] Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications
    Tan, D. Z. W.
    Cheng, H.
    Nguyen, S. T.
    Duong, H. M.
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A107 - A113
  • [8] Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications
    Duong, H.M. (mpedhm@nus.edu.sg), 1600, Maney Publishing (09):
  • [9] Template synthesis of MnO2/CNT nanocomposite and its application in rechargeable lithium batteries
    Zou Min-min
    Ai Deng-jun
    Liu Kai-yu
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (09) : 2010 - 2014
  • [10] Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications
    Ekaterina A. Arkhipova
    Anton S. Ivanov
    Konstantin I. Maslakov
    Roman Yu. Novotortsev
    Serguei V. Savilov
    Hui Xia
    Andrey V. Desyatov
    Sergey M. Aldoshin
    Ionics, 2022, 28 : 3501 - 3509