FAST MAGNETIC FIELD AMPLIFICATION IN THE EARLY UNIVERSE: GROWTH OF COLLISIONLESS PLASMA INSTABILITIES IN TURBULENT MEDIA

被引:12
作者
Falceta-Goncalves, D. [1 ,2 ]
Kowal, G. [2 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会; 欧洲研究理事会;
关键词
early universe; intergalactic medium; magnetic fields; magnetohydrodynamics (MHD); plasmas; turbulence; GALAXY CLUSTERS; EVOLUTION; DYNAMO; ORIGIN; MAGNETOHYDRODYNAMICS; GENERATION; FILAMENTS;
D O I
10.1088/0004-637X/808/1/65
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models;. (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo;. and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies-driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (similar to kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for. here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward. to build up large-scale coherent field structures in the long time evolution.
引用
收藏
页数:14
相关论文
共 64 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]   Random forcing of three-dimensional homogeneous turbulence [J].
Alvelius, K .
PHYSICS OF FLUIDS, 1999, 11 (07) :1880-1889
[3]   Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind [J].
Bale, S. D. ;
Kasper, J. C. ;
Howes, G. G. ;
Quataert, E. ;
Salem, C. ;
Sundkvist, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[4]   Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present [J].
Banerjee, R ;
Jedamzik, K .
PHYSICAL REVIEW D, 2004, 70 (12) :25
[5]  
Batchelor G. K., 1950, RSPSA, V201, P405
[6]  
BIERMANN L, 1950, Z NATURFORSCH A, V5, P65
[7]   The Coma cluster magnetic field from Faraday rotation measures [J].
Bonafede, A. ;
Feretti, L. ;
Murgia, M. ;
Govoni, F. ;
Giovannini, G. ;
Dallacasa, D. ;
Dolag, K. ;
Taylor, G. B. .
ASTRONOMY & ASTROPHYSICS, 2010, 513
[8]   Current Status of Turbulent Dynamo Theory From Large Scale to Small-Scale Dynamos [J].
Brandenburg, Axel ;
Sokoloff, Dmitry ;
Subramanian, Kandaswamy .
SPACE SCIENCE REVIEWS, 2012, 169 (1-4) :123-157
[9]   DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM [J].
Burkhart, Blakesley ;
Falceta-Goncalves, D. ;
Kowal, G. ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2009, 693 (01) :250-266
[10]   THE BOLTZMANN EQUATION AND THE ONE-FLUID HYDROMAGNETIC EQUATIONS IN THE ABSENCE OF PARTICLE COLLISIONS [J].
CHEW, GF ;
GOLDBERGER, ML ;
LOW, FE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 236 (1204) :112-118