HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

被引:1
作者
Marchetti, Luca [1 ]
Lombardo, Rosario [1 ]
Priami, Corrado [1 ,2 ]
机构
[1] Univ Trento, Ctr Computat & Syst Biol COSBI, Microsoft Res, Piazza Manifattura 1, I-38068 Rovereto, Italy
[2] Univ Pisa, Dept Comp Sci, Pisa, Italy
关键词
EXACT STOCHASTIC SIMULATION; SYSTEMS; ALGORITHM;
D O I
10.1155/2017/1232868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA). HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Critical Comparison of Rejection-Based Algorithms for Simulation of Large Biochemical Reaction Networks
    Vo Hong Thanh
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (08) : 3053 - 3073
  • [22] GPU-ACCELERATED SIMULATION ENSEMBLES OF STOCHASTIC REACTION NETWORKS
    Koester, Till
    Herrmann, Leon
    Andelfinger, Philipp
    Uhrmacher, Adelinde
    [J]. 2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2570 - 2581
  • [23] Stochastic Robust Simulation and Stability Properties of Chemical Reaction Networks
    Possieri, Corrado
    Teel, Andrew R.
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (01): : 2 - 12
  • [24] An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay
    Sayyidmousavi, Alireza
    Ilie, Silvana
    [J]. AIP ADVANCES, 2017, 7 (12):
  • [25] Sensitivity estimation for stochastic models of biochemical reaction networks in the presence of extrinsic variability
    Ruess, Jakob
    Koeppl, Heinz
    Zechner, Christoph
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (12)
  • [26] Quasi-robust control of biochemical reaction networks via stochastic morphing
    Plesa, Tomislav
    Stan, Guy-Bart
    Ouldridge, Thomas E.
    Bae, Wooli
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (177)
  • [27] Regularized maximum likelihood estimation of sparse stochastic monomolecular biochemical reaction networks
    Jang, Hong
    Kim, Kwang-Ki K.
    Braatz, Richard D.
    Gopaluni, R. Bhushan
    Lee, Jay H.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2016, 90 : 111 - 120
  • [28] A stochastic framework for the design of transient and steady state behavior of biochemical reaction networks
    Baetica, Ania A.
    Yuan, Ye
    Goncalves, Jorge
    Murray, Richard M.
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3199 - 3205
  • [29] SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks
    Sheppard, Patrick W.
    Rathinam, Muruhan
    Khammash, Mustafa
    [J]. BIOINFORMATICS, 2013, 29 (01) : 140 - 142
  • [30] Efficient stochastic simulation of biochemical reactions with noise and delays
    Thanh, Vo Hong
    Zunino, Roberto
    Priami, Corrado
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (08)