Strain induced magnetic anisotropy of high epitaxial Ni thin films grown on different oriented PMN-PT substrates

被引:10
作者
Tan, Yaoyu [1 ]
Liang, Kun [1 ]
Mei, Zhiheng [1 ]
Zhou, Peng [1 ]
Liu, Ying [1 ]
Qi, Yajun [1 ]
Ma, Zhijun [1 ]
Zhang, Tianjin [1 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Key Lab Green Preparat & Applicat Funct Mat, Minist Educ,Hubei Key Lab Polymer Mat,Dept Mat Sc, Wuhan 430062, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Thin films; Magnetic anisotropy; Strain; NICKEL; INTERFACES;
D O I
10.1016/j.ceramint.2017.12.200
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High epitaxial (001)-, (110)- and (111)-oriented Ni ferromagnetic thin films were coherently grown on Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 (PMN-PT) (001), (110) and (111) substrates by magnetron sputtering. Reciprocal space mapping (RSM) results indicate that all of these films are partially relaxed. The mechanism of strain-induced magnetic anisotropy of these epitaxial thin films has been investigated in detail. The easy axis is induced toward out-of-plane (OOP) due to compressive strain, while the hard axis is along in-plane (IP) owing to tensile strain. (111)- and (110)-oriented Ni thin films show the strongest and the weakest magnetic anisotropy, respectively. The strain-induced magnetoelastic energy for (001)-oriented Ni thin film increases its anisotropic field and decreases its total free energy resulting in an enhanced magnetic anisotropy comparing with (110)-oriented one. The remarkable variation of magnetization in high epitaxial Ni thin film system reveals that the magnetic anisotropy can be modulated by changing the biaxial strain.
引用
收藏
页码:5564 / 5568
页数:5
相关论文
共 32 条
[1]   Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films [J].
Adamo, C. ;
Ke, X. ;
Wang, H. Q. ;
Xin, H. L. ;
Heeg, T. ;
Hawley, M. E. ;
Zander, W. ;
Schubert, J. ;
Schiffer, P. ;
Muller, D. A. ;
Maritato, L. ;
Schlom, D. G. .
APPLIED PHYSICS LETTERS, 2009, 95 (11)
[2]  
[Anonymous], 1991, SCI TECHNOLOGY NANOS
[3]  
[Anonymous], 2000, Modern Magnetic Materials: Principles and Applications
[4]   First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets [J].
Atanasov, Mihail ;
Aravena, Daniel ;
Suturina, Elizaveta ;
Bill, Eckhard ;
Maganas, Dimitrios ;
Neese, Frank .
COORDINATION CHEMISTRY REVIEWS, 2015, 289 :177-214
[5]   A method to control magnetism in individual strain-mediated magnetoelectric islands [J].
Cui, Jizhai ;
Hockel, Joshua L. ;
Nordeen, Paul K. ;
Pisani, David M. ;
Liang, Cheng-yen ;
Carman, Gregory P. ;
Lynch, Christopher S. .
APPLIED PHYSICS LETTERS, 2013, 103 (23)
[6]  
Cullity D., 2009, Introduction to Magnetic Materials, V2nd
[7]   1ST-PRINCIPLES CALCULATION OF THE MAGNETOCRYSTALLINE ANISOTROPY ENERGY OF IRON, COBALT, AND NICKEL [J].
DAALDEROP, GHO ;
KELLY, PJ ;
SCHUURMANS, MFH .
PHYSICAL REVIEW B, 1990, 41 (17) :11919-11937
[8]   Evidence of high-spin Ru and universal magnetic anisotropy in SrRuO3 thin films [J].
Grutter, A. J. ;
Wong, F. J. ;
Arenholz, E. ;
Vailionis, A. ;
Suzuki, Y. .
PHYSICAL REVIEW B, 2012, 85 (13)
[9]   Effect of substrate strain on lattice structure, electrical resistivity, and optical conductivity of Nd0.5Sr0.5MnO3 thin films grown on SrTiO3 [J].
Jang, S. Y. ;
Nakagawa, N. ;
Moon, S. J. ;
Susaki, T. ;
Kim, K. W. ;
Lee, Y. S. ;
Hwang, H. Y. ;
Myung-Whun, K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (41-42) :1760-1764
[10]   Experimental and theoretical study of lattice relaxation around refractory atoms in nickel [J].
Koteski, V. ;
Mahnke, H. -E. ;
Belosevic-Cavor, J. ;
Cekic, B. ;
Schumacher, G. .
ACTA MATERIALIA, 2008, 56 (17) :4601-4607