Lagrangian Floer theory on compact toric manifolds II: bulk deformations

被引:71
作者
Fukaya, Kenji [1 ]
Oh, Yong-Geun [2 ]
Ohta, Hiroshi [3 ,5 ]
Ono, Kaoru [4 ,5 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[5] Korea Inst Adv Study, Seoul, South Korea
来源
SELECTA MATHEMATICA-NEW SERIES | 2011年 / 17卷 / 03期
基金
美国国家科学基金会;
关键词
Toric manifolds; Floer cohomology; Weakly unobstructed Lagrangian submanifolds; Potential function; Jacobian ring; Bulk deformations; Bulk-balanced Lagrangian submanifolds; Open-closed Gromov-Witten invariant; SUBMANIFOLDS; VARIETIES; HOMOLOGY;
D O I
10.1007/s00029-011-0057-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all fibers with non-vanishing Floer cohomology with bulk deformations in arbitrary compact toric manifolds, which we call bulk-balanced Lagrangian fibers.
引用
收藏
页码:609 / 711
页数:103
相关论文
共 32 条