Genome-wide identification, expression analysis and evolutionary relationships of the IQ67-domain gene family in common wheat (Triticum aestivum L.) and its progenitors

被引:3
|
作者
Ke, Qinglin [1 ]
Sun, Huifan [1 ]
Tang, Minqiang [2 ]
Luo, Ruihan [1 ]
Zeng, Yan [1 ]
Wang, Mengxing [3 ]
Li, Yihan [1 ]
Li, Zhimin [1 ]
Cui, Licao [1 ,4 ]
机构
[1] Jiangxi Agr Univ, Coll Biosci & Engn, Nanchang 330045, Jiangxi, Peoples R China
[2] Hainan Univ, Coll Forestry, Haikou 570228, Hainan, Peoples R China
[3] Jiangxi Agr Univ, Coll Agron, Nanchang 330045, Jiangxi, Peoples R China
[4] Chinese Acad Agr Sci, Key Lab Crop Gene Resources & Germplasm Enhanceme, Natl Key Facil Crop Gene Resources & Genet Improv, Inst Crop Sci,MOA, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Wheat; IQD gene family; Expression profiles; Polyploidization; Asymmetric evolution; B-LIKE PROTEINS; ARABIDOPSIS; CALMODULINS; CDPK; SUN;
D O I
10.1186/s12864-022-08520-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. Results We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. Conclusions This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Genome-wide identification, expression analysis and evolutionary relationships of the IQ67-domain gene family in common wheat (Triticum aestivum L.) and its progenitors
    Qinglin Ke
    Huifan Sun
    Minqiang Tang
    Ruihan Luo
    Yan Zeng
    Mengxing Wang
    Yihan Li
    Zhimin Li
    Licao Cui
    BMC Genomics, 23
  • [2] Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)
    Zhisheng Han
    Yanlin Liu
    Xiong Deng
    Dongmiao Liu
    Yue Liu
    Yingkao Hu
    Yueming Yan
    BMC Genomics, 20
  • [3] Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)
    Han, Zhisheng
    Liu, Yanlin
    Deng, Xiong
    Liu, Dongmiao
    Liu, Yue
    Hu, Yingkao
    Yan, Yueming
    BMC GENOMICS, 2019, 20 (1)
  • [4] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Peipei Zhang
    Linghui Zhang
    Tao Chen
    Fanli Jing
    Yuan Liu
    Jingfu Ma
    Tian Tian
    Delong Yang
    Molecular Biology Reports, 2022, 49 : 2899 - 2913
  • [5] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Zhang, Peipei
    Zhang, Linghui
    Chen, Tao
    Jing, Fanli
    Liu, Yuan
    Ma, Jingfu
    Tian, Tian
    Yang, Delong
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (04) : 2899 - 2913
  • [6] Genome-wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.)
    Gao, Weidong
    Zhang, Long
    Zhang, Yanyan
    Zhang, Peipei
    Shahinnia, Fahimeh
    Chen, Tao
    Yang, Delong
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [7] Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat (Triticum aestivum L.)
    Wang, Xianguo
    Liu, Yang
    Li, Zheng
    Gao, Xiang
    Dong, Jian
    Zhang, Jiacheng
    Zhang, Longlong
    Thomashow, Linda S.
    Weller, David M.
    Yang, Mingming
    PLANTS-BASEL, 2020, 9 (07): : 1 - 20
  • [8] Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.)
    Yue, Hong
    Shu, Duntao
    Wang, Meng
    Xing, Guangwei
    Zhan, Haoshuang
    Du, Xianghong
    Song, Weining
    Nie, Xiaojun
    GENES, 2018, 9 (02)
  • [9] Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.)
    Bai, Jian-fang
    Wang, Yu-kun
    Wang, Peng
    Yuan, Shao-hua
    Gao, Jian-gang
    Duan, Wen-jing
    Wang, Na
    Zhang, Feng-ting
    Zhang, Wen-jie
    Qin, Meng-ying
    Zhao, Chang-ping
    Zhang, Li-ping
    BMC GENOMICS, 2018, 19
  • [10] Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.)
    Jin, Peng
    Gao, Shiqi
    He, Long
    Xu, Miaoze
    Zhang, Tianye
    Zhang, Fan
    Jiang, Yaoyao
    Liu, Tingting
    Yang, Jin
    Yang, Jian
    Dai, Liangying
    Chen, Jianping
    PLANTS-BASEL, 2021, 10 (01): : 1 - 19