Some examples of nonlinear homogenization involving nearly degenerate energies

被引:5
作者
Bhattacharya, K [1 ]
Kohn, RV
Kozlov, S
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Marseille, Dept Math, Marseille, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1999年 / 455卷 / 1982期
关键词
homogenization; shape-memory polycrystals; optimal bounds; checkerboard microstructure;
D O I
10.1098/rspa.1999.0324
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a specific class of nonlinear homogenization problems. The microstructure is a sort of checkerboard polycrystal, and the energy of the basic crystal is degenerate in one direction. We give matching upper and lower bounds for the homogenized energy. The motivation for this problem lies in the recent work of Bhattacharya & Kohn on shape-memory polycrystals. Our results show that a bound proved therein is nearly sharp.
引用
收藏
页码:567 / 583
页数:17
相关论文
共 11 条
[1]  
[Anonymous], 1994, HOMOGENIZATION DIFFE
[2]   EXACT RESULT FOR THE EFFECTIVE CONDUCTIVITY OF A CONTINUUM PERCOLATION MODEL [J].
BERLYAND, L ;
GOLDEN, K .
PHYSICAL REVIEW B, 1994, 50 (04) :2114-2117
[3]   ASYMPTOTICS OF THE HOMOGENIZED MODULI FOR THE ELASTIC CHESS-BOARD COMPOSITE [J].
BERLYAND, LV ;
KOZLOV, SM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 118 (02) :95-112
[4]   Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials [J].
Bhattacharya, K ;
Kohn, RV .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (02) :99-180
[5]   Network approximation for transport properties of high contrast materials [J].
Borcea, L ;
Papanicolaou, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (02) :501-539
[6]  
DYKHNE AM, 1971, ZH EKSP TEOR FIZ, V32, P63
[7]   CONDUCTION IN INHOMOGENEOUS MATERIALS - HOT AND HIGH-FIELD SPOTS [J].
HELSING, J ;
AXELL, J ;
GRIMVALL, G .
PHYSICAL REVIEW B, 1989, 39 (13) :9231-9235
[8]   GEOMETRIC ASPECTS OF AVERAGING [J].
KOZLOV, SM .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (02) :91-144
[9]  
REDNER S, 1985, PHYSICS FINELY DIVID
[10]   BOUNDS ON CONDUCTIVITY OF STATISTICALLY ISOTROPIC POLYCRYSTALS [J].
SCHULGASSER, K .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (03) :407-417