Multivariate Longitudinal Analysis with Bivariate Correlation Test

被引:8
作者
Adjakossa, Eric Houngla [1 ,2 ]
Sadissou, Ibrahim [3 ,4 ]
Hounkonnou, Mahouton Norbert [2 ]
Nuel, Gregory [1 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, Case Courrier 188 4, Pl Jussieu, F-75252 Paris 05, France
[2] Univ Abomey Calavi, 072 BP 50, Cotonou, Benin
[3] Univ Abomey Calavi, Lab Biol & Physiol Cellulaires, Cotonou, Benin
[4] CERPAGE, Cotonou, Benin
关键词
LIKELIHOOD RATIO TESTS; MIXED-EFFECTS MODELS; MULTILEVEL ANALYSIS; OUTCOMES; INDIVIDUALS; PROFILES; QUALITY;
D O I
10.1371/journal.pone.0159649
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
引用
收藏
页数:33
相关论文
共 89 条
[1]   A latent factor linear mixed model for high-dimensional longitudinal data analysis [J].
An, Xinming ;
Yang, Qing ;
Bentler, Peter M. .
STATISTICS IN MEDICINE, 2013, 32 (24) :4229-4239
[2]   NEW BALLARD SCORE, EXPANDED TO INCLUDE EXTREMELY PREMATURE-INFANTS [J].
BALLARD, JL ;
KHOURY, JC ;
WEDIG, K ;
WANG, L ;
EILERSWALSMAN, BL ;
LIPP, R .
JOURNAL OF PEDIATRICS, 1991, 119 (03) :417-423
[3]   A review of multivariate longitudinal data analysis [J].
Bandyopadhyay, S. ;
Ganguli, B. ;
Chatterjee, A. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (04) :299-330
[4]   Properties of sufficiency and statistical tests [J].
Bartlett, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) :0268-0282
[5]  
Bates D., 2014, J Stat Softw, DOI [DOI 10.18637/JSS.V067.I01, 10.18637/jss.v067.i01]
[6]   Multivariate longitudinal models for complex change processes [J].
Beckett, LA ;
Tancredi, DJ ;
Wilson, RS .
STATISTICS IN MEDICINE, 2004, 23 (02) :231-239
[7]   LINEAR STRUCTURAL EQUATIONS WITH LATENT-VARIABLES [J].
BENTLER, PM ;
WEEKS, DG .
PSYCHOMETRIKA, 1980, 45 (03) :289-308
[8]  
Brandsma H. P., 1989, International Journal of Educational Research, V17, P777, DOI [10.1016/0883-0355(89)90028-1, DOI 10.1016/0883-0355(89)90028-1]
[9]   A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data [J].
Bringmann, Laura F. ;
Vissers, Nathalie ;
Wichers, Marieke ;
Geschwind, Nicole ;
Kuppens, Peter ;
Peeters, Frenk ;
Borsboom, Denny ;
Tuerlinckx, Francis .
PLOS ONE, 2013, 8 (04)
[10]  
Brombin C, 2014, STAT METHODS