Minimax Estimation of Bandable Precision Matrices

被引:0
作者
Hu, Addison J. [1 ]
Negahban, Sahand N. [1 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
关键词
OPTIMAL RATES; COVARIANCE; CONVERGENCE; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inverse covariance matrix provides considerable insight for understanding statistical models in the multivariate setting. In particular, when the distribution over variables is assumed to be multivariate normal, the sparsity pattern in the inverse covariance matrix, commonly referred to as the precision matrix, corresponds to the adjacency matrix representation of the Gauss-Markov graph, which encodes conditional independence statements between variables. Minimax results under the spectral norm have previously been established for covariance matrices, both sparse and banded, and for sparse precision matrices. We establish minimax estimation bounds for estimating banded precision matrices under the spectral norm. Our results greatly improve upon the existing bounds; in particular, we find that the minimax rate for estimating banded precision matrices matches that of estimating banded covariance matrices. The key insight in our analysis is that we are able to obtain barely-noisy estimates of k X k subblocks of the precision matrix by inverting slightly wider blocks of the empirical covariance matrix along the diagonal. Our theoretical results are complemented by experiments demonstrating the sharpness of our bounds.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2008, INTRO NONPARAMETRIC
[2]  
Assouad B. Yu., 1997, Festschrift for Lucien Le Cam, P423
[3]   Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series [J].
Bickel, Peter J. ;
Gel, Yulia R. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :711-728
[4]  
Boyd S, 2004, CONVEX OPTIMIZATION
[5]  
Cai T. T., 2011, ARXIV11022233STAT
[6]   Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation [J].
Cai, T. Tony ;
Ren, Zhao ;
Zhou, Harrison H. .
ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01) :1-59
[7]   ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES OF CONVERGENCE AND ADAPTIVE ESTIMATION [J].
Cai, T. Tony ;
Liu, Weidong ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2016, 44 (02) :455-488
[8]   OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2012, 40 (05) :2389-2420
[9]   OPTIMAL RATES OF CONVERGENCE FOR COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhang, Cun-Hui ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2010, 38 (04) :2118-2144
[10]  
FRIEDMAN J, 2007, BIOSTATISTICS