Improving the Efficiency of PTB1: PCBM Bulk Heterojunction Solar Cells by Polymer Blend Solution Aging

被引:6
作者
Han, Peilin [1 ]
Balderrama, Victor S. [1 ]
Mihi, Agustin [1 ]
Formentin, Pilar [1 ]
Ferre-Borrull, Josep [1 ]
Pallares, Josep [1 ]
Marsal, Lluis F. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Elect Elect & Automat, E-43007 Tarragona, Spain
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2015年 / 5卷 / 03期
关键词
Microphase separation; PTB1:PCBM solar cells; solution aging; X-ray scattering; HIGH-PERFORMANCE; SEMICONDUCTING POLYMERS; SIDE-CHAINS; MORPHOLOGY; POLY(3-HEXYLTHIOPHENE); LAYER; REGIOREGULARITY; OXIDE;
D O I
10.1109/JPHOTOV.2015.2402433
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polymer blend aging is a crucial processing step leading to improved performance of poly((4,8-bis (octyloxy) benzo (1,2-b:4,5-b') dithiophene-2,6-diyl) (2-((dodecyloxy) carbonyl) thieno(3,4-b) thiophenediyl)):[6,6]-phenyl-C-61-butyric acid methyl ester bulk heterojunction (BHJ) solar cells. The optimum aging time of the polymer mixture is found by storing the completely dissolved blend solution of the donor and acceptor for certain periods of time before device fabrication. Increased aging times improves microphase separation morphology and the and bicontinuous interpenetrating network, as proven by close inspection of the polymer mixture. As a consequence of such a synergistic increase, the resulting solar cells show an enhancement in short-circuit current. Power conversion efficiencies as high as 5.16% are found in devices fabricated with aged blends, which is a significant improvement exceeding 19% over the efficiency of 4.32% obtained in devices without polymer blend solution aging. This simple procedure has the potential to boost the maximum efficiencies exhibited by this technology.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 37 条
[1]  
[Anonymous], APPL PHYS LETT
[2]  
[Anonymous], NATURE MAT
[3]   Degradation of electrical properties of PTB1:PCBM solar cells under different environments [J].
Balderrama, V. S. ;
Estrada, M. ;
Han, P. L. ;
Granero, P. ;
Pallares, J. ;
Ferre-Borrull, J. ;
Marsal, L. F. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 125 :155-163
[4]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[5]   Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive [J].
Chen, Hsiang-Yu ;
Yang, Hoichang ;
Yang, Guanwen ;
Sista, Srinivas ;
Zadoyan, Ruben ;
Li, Gang ;
Yang, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (18) :7946-7953
[6]  
Chen S, 2012, J MATER CHEM, V22, P24202, DOI [10.1039/c2jm33838f, 10.1039/c2m33838f]
[7]   Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells [J].
Chen, Wei ;
Xu, Tao ;
He, Feng ;
Wang, Wei ;
Wang, Cheng ;
Strzalka, Joseph ;
Liu, Yun ;
Wen, Jianguo ;
Miller, Dean J. ;
Chen, Jihua ;
Hong, Kunlun ;
Yu, Luping ;
Darling, Seth B. .
NANO LETTERS, 2011, 11 (09) :3707-3713
[8]   Charge Photogeneration in Organic Solar Cells [J].
Clarke, Tracey M. ;
Durrant, James R. .
CHEMICAL REVIEWS, 2010, 110 (11) :6736-6767
[9]   Properties of PEO in dilute solution under stirring [J].
Duval, M ;
Sarazin, D .
MACROMOLECULES, 2003, 36 (04) :1318-1323
[10]   Materials interface engineering for solution-processed photovoltaics [J].
Graetzel, Michael ;
Janssen, Rene A. J. ;
Mitzi, David B. ;
Sargent, Edward H. .
NATURE, 2012, 488 (7411) :304-312