High throughput blood plasma separation using a passive PMMA microfluidic device

被引:17
作者
Shamsi, Alireza [1 ]
Shamloo, Amir [1 ]
Mohammadaliha, Negar [1 ]
Hajghassem, Hassan [2 ]
Mehrabadi, Jalil Fallah [3 ]
Bazzaz, Masoumeh [3 ]
机构
[1] Sharif Univ Technol, Sch Mech Engn, CEEC, POB 11155-9567, Tehran, Iran
[2] Univ Tehran, Fac New Sci & Technol, Tehran, Iran
[3] Lister Inst Microbiol, Tehran, Iran
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2016年 / 22卷 / 10期
关键词
WHOLE HUMAN BLOOD; CELL-SEPARATION; FLOW; FRACTIONATION; MICROCHANNEL; EXTRACTION; FILTRATION; GLUCOSE;
D O I
10.1007/s00542-015-2664-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach-Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation efficiency of the passive separator device, and the separation efficiency of 66.6 % was achieved. The optimum purity efficiency of 70 % was achieved for 1:100 dilution times.
引用
收藏
页码:2447 / 2454
页数:8
相关论文
共 27 条
[1]   Microfluidics for cell separation [J].
Bhagat, Ali Asgar S. ;
Bow, Hansen ;
Hou, Han Wei ;
Tan, Swee Jin ;
Han, Jongyoon ;
Lim, Chwee Teck .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) :999-1014
[2]   Microfluidic chip for blood cell separation and collection based on crossflow filtration [J].
Chen, Xing ;
Cui, Da Fu ;
Liu, Chang Chun ;
Li, Hui .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 130 (01) :216-221
[3]   EXPERIMENTAL INVESTIGATION OF BRANCH FLOW RATIO, ANGLE, AND REYNOLDS-NUMBER EFFECTS ON THE PRESSURE AND FLOW-FIELDS IN ARTERIAL BRANCH MODELS [J].
CHO, YI ;
BACK, LH ;
CRAWFORD, DW .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1985, 107 (03) :257-267
[4]   Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel [J].
Choi, Sungyoung ;
Park, Je-Kyun .
LAB ON A CHIP, 2007, 7 (07) :890-897
[5]   Spheres in the vicinity of a bifurcation: elucidating the Zweifach-Fung effect [J].
Doyeux, V. ;
Podgorski, T. ;
Peponas, S. ;
Ismail, M. ;
Coupier, G. .
JOURNAL OF FLUID MECHANICS, 2011, 674 :359-388
[6]   Performance characterization of micromachined particle separation system based on Zweifach-Fung effect [J].
Fekete, Zoltan ;
Nagy, Peter ;
Huszka, Gergely ;
Tolner, Ferenc ;
Pongracz, Anita ;
Fuerjes, Peter .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 162 (01) :89-94
[7]   STOCHASTIC FLOW IN CAPILLARY BLOOD-VESSELS [J].
FUNG, Y .
MICROVASCULAR RESEARCH, 1973, 5 (01) :34-48
[8]  
Geng Z, 2011, 15 INT C MIN SYST CH
[9]   Microfluidic Devices for Blood Fractionation [J].
Hou, Han Wei ;
Bhagat, Ali Asgar S. ;
Lee, Wong Cheng ;
Huang, Sha ;
Han, Jongyoon ;
Lim, Chwee Teck .
MICROMACHINES, 2011, 2 (03) :319-343
[10]   Reliability of point-of-care testing for glucose measurement in critically ill adults [J].
Kanji, S ;
Buffie, J ;
Hutton, B ;
Bunting, PS ;
Singh, A ;
McDonald, K ;
Fergusson, D ;
McIntyre, LA ;
Hebert, PC .
CRITICAL CARE MEDICINE, 2005, 33 (12) :2778-2785