A SINGLE SNAPSHOT OPTIMAL FILTERING METHOD FOR FUNDAMENTAL FREQUENCY ESTIMATION

被引:0
|
作者
Jensen, Jesper Rindom [1 ]
Christensen, Mads Graesboll
Jensen, Soren Holdt [1 ]
机构
[1] Aalborg Univ, Dept Elect Syst, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark
关键词
Fundamental frequency estimation; optimal filtering; iterative adaptive approach;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recently, optimal linearly constrained minimum variance (LCMV) filtering methods have been applied for fundamental frequency estimation. Like many other fundamental frequency estimators, these methods utilize the inverse covariance matrix. Therefore, the covariance matrix needs to be invertible which is typically ensured by using the sample covariance matrix involving data partitioning. The partitioning adversely affects the spectral resolution. We propose a novel optimal filtering method which utilizes the LCMV principle in conjunction with the iterative adaptive approach (IAA). The IAA enables us to estimate the covariance matrix from a single snapshot, i.e., without data partitioning. The experimental results show, that the performance of the proposed method is comparable or better than that of other competing methods in terms of spectral resolution.
引用
收藏
页码:4272 / 4275
页数:4
相关论文
共 50 条
  • [1] Joint fundamental frequency and order estimation using optimal filtering
    Mads Græsbøll Christensen
    Jesper Lisby Højvang
    Andreas Jakobsson
    Søren Holdt Jensen
    EURASIP Journal on Advances in Signal Processing, 2011
  • [2] Joint fundamental frequency and order estimation using optimal filtering
    Christensen, Mads Graesboll
    Hojvang, Jesper Lisby
    Jakobsson, Andreas
    Jensen, Soren Holdt
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [3] Robust Estimation of Fundamental Frequency using Single Frequency Filtering Approach
    Pannala, Vishala
    Aneeja, G.
    Kadiri, Sudarsana Reddy
    Yegnanarayana, B.
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2155 - 2159
  • [4] Angle Estimation With Polarization Filtering: A Single Snapshot Approach
    Ma, Jiazhi
    Shi, Longfei
    Li, Yongzhen
    Xiao, Shunping
    Wang, Xuesong
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (01) : 257 - 268
  • [5] JOINT DOA AND FUNDAMENTAL FREQUENCY ESTIMATION BASED ON RELAXED ITERATIVE ADAPTIVE APPROACH AND OPTIMAL FILTERING
    Zhou, Zhenhua
    Christensen, M. G.
    Jensen, J. R.
    So, H. C.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6812 - 6816
  • [6] On Optimal Filter Designs for Fundamental Frequency Estimation
    Christensen, Mads Graesboll
    Jensen, Jesper Hojvang
    Jakobsson, Andreas
    Jensen, Soren Holdt
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 745 - 748
  • [7] FUNDAMENTAL FREQUENCY AND MODEL ORDER ESTIMATION USING SPATIAL FILTERING
    Karimian-Azari, Sam
    Jensen, Jesper Rindom
    Christensen, Mads Graesboll
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] Filtering of a dissonant frequency based on improved fundamental frequency estimation for speech enhancement
    Jeon, B
    Kang, S
    Baek, SJ
    Sung, KM
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (08) : 2063 - 2064
  • [9] ESTIMATION OF REACTOR PARAMETERS BY OPTIMAL FILTERING METHOD
    SUDA, N
    SHIRAI, S
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY-TOKYO, 1971, 8 (08): : 438 - &
  • [10] Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method
    Vojtech, Jennifer M.
    Segina, Roxanne K.
    Buckley, Daniel P.
    Kolin, Katharine R.
    Tardif, Monique C.
    Noordzij, J. Pieter
    Stepp, Cara E.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (05): : 3184 - 3202