Automorphism Groups of Small Distance-Regular Graphs

被引:1
作者
Belousov, I. N. [1 ]
Makhnev, A. A. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ul S Kovalevskoi 16, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
distance-regular graph; locally cyclic graph; intersection array; automorphism group;
D O I
10.1007/s10469-017-9447-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [1] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array {15, 12, 1; 1, 2, 15}, {35, 32, 1; 1, 2, 35}, {39, 36, 1; 1, 2, 39}, or {42, 39, 1; 1, 3, 42} (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 2017, GAP GROUPS ALG PROGR
[2]  
Belousov I. N., 2015, MALTS M INT C NOV RU, P87
[3]  
Burichenko V. P., 2011, P 42 ALL RUSS SCH C, P181
[4]  
Burichenko V. P., 2012, DOKL ROSS AKAD NAUK, V445, P375
[5]  
Makhnev A. A., 2011, DOKL AKAD NAUK+, V441, P305
[6]  
Makhnev A. A., 2013, DOKL ROSS AKAD NAUK, V450, P19
[7]   ON AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {27, 24, 1; 1, 8, 27} [J].
Tsiovkina, L. Yu .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 :689-698
[8]  
Tsiovkina LY, 2012, SIB ELECTRON MATH RE, V9, P285
[9]  
Zavarnitsine AV, 2009, SIB ELECTRON MATH RE, V6, P1