Fixed points of coprime operator groups

被引:5
作者
Acciarri, Cristina [1 ]
Shumyatsky, Pavel [1 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
Automorphisms; Centralizers; Derived groups; Associated Lie rings; Finite groups; LIE-ALGEBRAS; FINITE-GROUP; P-GROUPS; IDENTITIES; EXPONENT;
D O I
10.1016/j.jalgebra.2011.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m be a positive integer and A an elementary abelian group of order q(r) with r >= 2 acting on a finite q'-group G. We show that if for some integer d such that 2(d) <= r - 1 the dth derived group of C(G)(a) has exponent dividing m for any a is an element of A(#), then G((d)) has {m, q, r}-bounded exponent and if gamma(r-1)(C(G)(a)) has exponent dividing m for any a is an element of A(#), then gamma(r-1)(G) has {m,q,r}-bounded exponent. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1998, p-automorphisms of finite p-groups, volume 246 of London Mathematical Society Lecture Note Series
[2]  
[Anonymous], 1956, Proc. London Math. Soc.
[3]  
[Anonymous], ENDLICHE GRUPPEN 1
[4]  
Bakhturin Yu. A., 1998, J ALGEBRA, V205, P1
[5]  
Dixon J. D., 1991, ANAL PRO P GROUPS, V157
[6]  
Gorenstein D., 1980, FINITE GROUP, V2nd
[7]   Derived subgroups of fixed points [J].
Guralnick, R ;
Shumyatsky, P .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 126 (1) :345-362
[8]  
Higman G., 1957, J.London Math. Soc. (2), V32, P321, DOI [10.1112/jlms/s1-32.3.321, DOI 10.1112/JLMS/S1-32.3.321]
[9]  
Khukhro E. I., 1993, NILPOTENT GROUPS THE
[10]   Bounding the exponent of a finite group with automorphisms [J].
Khukhro, EI ;
Shumyatsky, P .
JOURNAL OF ALGEBRA, 1999, 212 (01) :363-374