Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials

被引:44
作者
Xu, He-Xiu [1 ,2 ]
Wang, Mingzhao [1 ]
Hu, Guangwei [3 ]
Wang, Shaojie [1 ]
Wang, Yanzhao [1 ]
Wang, Chaohui [1 ]
Zeng, Yixuan [3 ]
Li, Jiafang [4 ,5 ]
Zhang, Shuang [6 ,7 ]
Huang, Wei [2 ]
机构
[1] Air Force Engn Univ, Air & Missile Def Coll, Xian 710051, Peoples R China
[2] Northwestern Polytech Univ, Inst Flexible Elect, Xian 710072, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[4] Ctr Quantum Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[6] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[7] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
关键词
All Open Access; Gold; Green;
D O I
10.34133/2021/9806789
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many real-world applications, including adaptive radar scanning and smart stealth, require reconfigurable multifunctional devices to simultaneously manipulate multiple degrees of freedom of electromagnetic (EM) waves in an on-demand manner. Recently, kirigami technique, affording versatile and unconventional structural transformation, has been introduced to endow metamaterials with the capability of controlling EM waves in a reconfigurable manner. Here, we report for a kirigami-inspired sparse meta-architecture, with structural density of 1.5% in terms of the occupation space, for adaptive invisibility based on independent operations of frequency, bandwidth, and amplitude. Based on the general principle of dipolar management via structural reconstruction of kirigami-inspired meta-architectures, we demonstrate reconfigurable invisibility management with abundant EM functions and a wide tuning range using three enantiomers (A, B, and C) of different geometries characterized by the folding angle beta. Our strategy circumvents issues of limited abilities, narrow tuning range, extreme condition, and high cost raised by available reconfigurable metamaterials, providing a new avenue toward multifunctional smart devices.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Bioinspired kirigami metasurfaces as assistive shoe grips [J].
Babaee, Sahab ;
Pajovic, Simo ;
Rafsanjani, Ahmad ;
Shi, Yichao ;
Bertoldi, Katia ;
Traverso, Giovanni .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (08) :778-786
[2]   From flat sheets to curved geometries: Origami and kirigami approaches [J].
Callens, Sebastien J. P. ;
Zadpoor, Amir A. .
MATERIALS TODAY, 2018, 21 (03) :241-264
[3]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[4]   A Reconfigurable Active Huygens' Metalens [J].
Chen, Ke ;
Feng, Yijun ;
Monticone, Francesco ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian ;
Zhang, Lei ;
Kim, Yongjune ;
Ding, Xumin ;
Zhang, Shuang ;
Alu, Andrea ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2017, 29 (17)
[5]   Origami-based microwave absorber with a reconfigurable bandwidth [J].
Chen, Xiqiao ;
Li, Wei ;
Wu, Zhuang ;
Zhang, Zilong ;
Zou, Yanhong .
OPTICS LETTERS, 2021, 46 (06) :1349-1352
[6]   Tunable Metasurface Inverse Design for 80% Switching Efficiencies and 144° Angular Deflection [J].
Chung, Haejun ;
Miller, Owen D. .
ACS PHOTONICS, 2020, 7 (08) :2236-2243
[7]   Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial [J].
Cong, Longqing ;
Pitchappa, Prakash ;
Lee, Chengkuo ;
Singh, Ranjan .
ADVANCED MATERIALS, 2017, 29 (26)
[8]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[9]   Transformation from 2D meta-pixel to 3D meta -pixel using auxetic kirigami for programmable multifunctional electromagnetic response [J].
Dinh Hai Le ;
Xu, Ying ;
Tentzeris, Manos M. ;
Lim, Sungjoon .
EXTREME MECHANICS LETTERS, 2020, 36
[10]   Optical response features of Si-nanoparticle arrays [J].
Evlyukhin, Andrey B. ;
Reinhardt, Carsten ;
Seidel, Andreas ;
Luk'yanchuk, Boris S. ;
Chichkov, Boris N. .
PHYSICAL REVIEW B, 2010, 82 (04)