Fundamental Limits on the Capacities of Bipartite Quantum Interactions

被引:28
作者
Baeuml, Stefan [1 ,2 ,3 ]
Das, Siddhartha [4 ]
Wilde, Mark M. [4 ,5 ]
机构
[1] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Res Ctr Theoret Quantum Phys, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[4] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
CLASSICAL COMMUNICATION; RELATIVE ENTROPY; ENTANGLEMENT; PRIVATE; KEY; BOUNDS;
D O I
10.1103/PhysRevLett.121.250504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bipartite quantum interactions have applications in a number of different areas of quantum physics, reaching from fundamental areas such as quantum thermodynamics and the theory of quantum measurements to other applications such as quantum computers, quantum key distribution, and other information processing protocols. A particular aspect of the study of bipartite interactions is concerned with the entanglement that can be created from such interactions. In this Letter, we present our work on two basic building blocks of bipartite quantum protocols, namely, the generation of maximally entangled states and secret key via bipartite quantum interactions. In particular, we provide a nontrivial, efficiently computable upper bound on the positive-partial-transpose-assisted quantum capacity of a bipartite quantum interaction. In addition, we provide an upper bound on the secret-key-agreement capacity of a bipartite quantum interaction assisted by local operations and classical communication. As an application, we introduce a cryptographic protocol for the readout of a digital memory device that is secure against a passive eavesdropper.
引用
收藏
页数:6
相关论文
共 45 条
[1]  
[Anonymous], GROUP 22 P 22 INT C
[2]   Asymptotic relative entropy of entanglement for orthogonally invariant states [J].
Audenaert, K ;
De Moor, B ;
Vollbrecht, KGH ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 66 (03) :323101-323111
[3]   Entropy power inequalities for qudits [J].
Audenaert, Koenraad ;
Datta, Nilanjana ;
Ozols, Maris .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   On the capacities of bipartite Hamiltonians and unitary gates [J].
Bennett, CH ;
Harrow, AW ;
Leung, DW ;
Smolin, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (08) :1895-1911
[6]   Amortization does not enhance the max-Rains information of a quantum channel [J].
Berta, Mario ;
Wilde, Mark M. .
NEW JOURNAL OF PHYSICS, 2018, 20
[7]   Communication capacity of quantum computation [J].
Bose, S ;
Rallan, L ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5448-5451
[8]   Entangling and assisted entangling power of bipartite unitary operations [J].
Chen, Lin ;
Yu, Li .
PHYSICAL REVIEW A, 2016, 94 (02)
[9]   Two-way quantum communication channels [J].
Childs, AM ;
Leung, DW ;
Lo, HK .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (01) :63-83
[10]   Relative Entropy Bounds on Quantum, Private and Repeater Capacities [J].
Christandl, Matthias ;
Mueller-Hermes, Alexander .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (02) :821-852