Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718

被引:125
作者
Wei, H. L. [1 ]
Knapp, G. L. [2 ]
Mukherjee, T. [2 ]
DebRoy, T. [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Directed energy deposition; Grain growth; Solidification; Inconel; 718; SURFACE-TENSION; MICROSTRUCTURE EVOLUTION; RESIDUAL-STRESSES; LASER DEPOSITION; HEAT-TRANSFER; FLUID-FLOW; SIMULATION; SOLIDIFICATION; METAL; ORIENTATION;
D O I
10.1016/j.addma.2018.11.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heterogeneous grain structure is a source of the inhomogeneity in structure and properties of the metallic components made by multi-layer additive manufacturing (AM). During AM, repeated heating and cooling during mull-layer deposition, local temperature gradient and solidification growth rate, deposit geometry, and molten pool shape and size govern the evolution of the grain structure. Here the effects of these causative factors on the heterogeneous grain growth during multi-layer laser deposition of Inconel 718 are examined by a Monte Carlo method based grain growth model. It is found that epitaxial columnar grain growth occurs from the substrate or previously deposited layer to the curved top surface of the deposit. The growth direction of these columnar grains is controlled by the molten pool shape and size. The grains in the previously deposited layers continue to grow because of the repeated heating and cooling during the deposition of the successive layers. Average longitudinal grain area decreases by approximately 80% when moving from the center to the edge of the deposit due to variable growth directions dependent on the local curvatures of the moving molten pool. The average horizontal grain area increases with the distance from the substrate, with a 20% increase in the horizontal grain area in a short distance from the third to the eighth layer, due to competitive solid-state grain growth causes increased grain size in previous layers.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 58 条
[1]   Understanding grain evolution in additive manufacturing through modeling [J].
Akram, Javed ;
Chalavadi, Pradeep ;
Pal, Deepankar ;
Stucker, Brent .
ADDITIVE MANUFACTURING, 2018, 21 :255-268
[2]   Epitaxy and Microstructure Evolution in Metal Additive Manufacturing [J].
Basak, Amrita ;
Das, Suman .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 46, 2016, 46 :125-149
[3]   Solidification Map of a Nickel-Base Alloy [J].
Blecher, J. J. ;
Palmer, T. A. ;
DebRoy, T. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (04) :2142-2151
[4]   A smart model to estimate effective thermal conductivity and viscosity in the weld pool [J].
De, A ;
DebRoy, T .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (09) :5230-5240
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]   Texture control during laser deposition of nickel-based superalloy [J].
Dinda, G. P. ;
Dasgupta, A. K. ;
Mazumder, J. .
SCRIPTA MATERIALIA, 2012, 67 (05) :503-506
[7]   Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing [J].
Gan, Zhengtao ;
Yu, Gang ;
He, Xiuli ;
Li, Shaoxia .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 86 :206-214
[8]   Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel [J].
Gan, Zhengtao ;
Yu, Gang ;
He, Xiuli ;
Li, Shaoxia .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 :28-38
[9]   Real time-temperature models for Monte Carlo simulations of normal grain growth [J].
Gao, JH ;
Thompson, RG .
ACTA MATERIALIA, 1996, 44 (11) :4565-4570
[10]  
Gu D. D., 2012, INT MATER REV, V57, P3