Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia

被引:15
作者
Mascarenhas Saraiva, Miguel [1 ,2 ,3 ]
Ribeiro, Tiago [1 ,2 ]
Afonso, Joao [1 ,2 ]
Andrade, Patricia [1 ,2 ,3 ]
Cardoso, Pedro [1 ,2 ]
Ferreira, Joao [1 ,4 ]
Cardoso, Helder [2 ,3 ]
Macedo, Guilherme [1 ,2 ,3 ]
机构
[1] Sao Joao Univ Hosp, Dept Gastroenterol, Alameda Prof Hernani Monteiro, P-4200427 Porto, Portugal
[2] WGO Gastroenterol & Hepatol Training Ctr, P-4200427 Porto, Portugal
[3] Univ Porto, Fac Med, Alameda Prof Hernani Monteiro, P-4200427 Porto, Portugal
[4] Univ Porto, Fac Engn, Dept Mech Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
来源
MEDICINA-LITHUANIA | 2021年 / 57卷 / 12期
关键词
device-assisted enteroscopy; angioectasia; gastrointestinal bleeding; artificial intelligence; convolutional neural networks; deep learning; DOUBLE-BALLOON ENTEROSCOPY; ARTIFICIAL-INTELLIGENCE; DIAGNOSTIC YIELD; CAPSULE ENDOSCOPY; REBLEEDING RATE; MANAGEMENT; NEOPLASIA; LESIONS;
D O I
10.3390/medicina57121378
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and Objectives: Device-assisted enteroscopy (DAE) allows deep exploration of the small bowel and combines diagnostic and therapeutic capacities. Suspected mid-gastrointestinal bleeding is the most frequent indication for DAE, and vascular lesions, particularly angioectasia, are the most common etiology. Nevertheless, the diagnostic yield of DAE for the detection of these lesions is suboptimal. Deep learning algorithms have shown great potential for automatic detection of lesions in endoscopy. We aimed to develop an artificial intelligence (AI) model for the automatic detection of angioectasia DAE images. Materials and Methods: A convolutional neural network (CNN) was developed using DAE images. Each frame was labeled as normal/mucosa or angioectasia. The image dataset was split for the constitution of training and validation datasets. The latter was used for assessing the performance of the CNN. Results: A total of 72 DAE exams were included, and 6740 images were extracted (5345 of normal mucosa and 1395 of angioectasia). The model had a sensitivity of 88.5%, a specificity of 97.1% and an AUC of 0.988. The image processing speed was 6.4 ms/frame. Conclusions: The application of AI to DAE may have a significant impact on the management of patients with suspected mid-gastrointestinal bleeding.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Incidence of bleeding lesions within reach of conventional upper and lower endoscopes in patients undergoing double-balloon enteroscopy for obscure gastrointestinal bleeding [J].
Fry, L. C. ;
Bellutti, M. ;
Neumann, H. ;
Malfertheiner, P. ;
Moenkemueller, K. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2009, 29 (03) :342-349
[2]   ACG Clinical Guideline: Diagnosis and Management of Small Bowel Bleeding [J].
Gerson, Lauren B. ;
Fidler, Jeff L. ;
Cave, David R. ;
Leighton, Jonathan A. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2015, 110 (09) :1265-1287
[3]  
Gomes C, 2020, REV ESP ENFERM DIG, V112, P262, DOI [10.17235/reed.2020.6833/2019, 10.17235/reed.2020.6833/2020]
[4]   A Risk Assessment of Factors for the Presence of Angiodysplasias During Endoscopy and Factors Contributing to Symptomatic Bleeding and Rebleeds [J].
Grooteman, K. V. ;
Holleran, G. ;
Matheeuwsen, M. ;
van Geenen, E. J. M. ;
McNamara, D. ;
Drenth, J. P. H. .
DIGESTIVE DISEASES AND SCIENCES, 2019, 64 (10) :2923-2932
[5]   Deep learning-based detection of eosinophilic esophagitis [J].
Guimaraes, Pedro ;
Keller, Andreas ;
Fehlmann, Tobias ;
Lammert, Frank ;
Casper, Markus .
ENDOSCOPY, 2022, 54 (03) :299-304
[6]   The role of endoscopy in the management of suspected small-bowel bleeding [J].
Gurudu, Suryakanth R. ;
Bruining, David H. ;
Acosta, Ruben D. ;
Eloubeidi, Mohamad A. ;
Faulx, Ashley L. ;
Khashab, Mouen A. ;
Kothari, Shivangi ;
Lightdale, Jenifer R. ;
Muthusamy, V. Raman ;
Yang, Julie ;
DeWitt, John M. .
GASTROINTESTINAL ENDOSCOPY, 2017, 85 (01) :22-31
[7]   Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video) [J].
Hashimoto, Rintaro ;
Requa, James ;
Dao, Tyler ;
Ninh, Andrew ;
Tran, Elise ;
Mai, Daniel ;
Lugo, Michael ;
Chehade, Nabil El-Hage ;
Chang, Kenneth J. ;
Karnes, Williams E. ;
Samarasena, Jason B. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1264-+
[8]   Double-balloon enteroscopy: Indications, diagnostic yield, and complications in a series of 275 patients with suspected small-bowel disease [J].
Heine, GDN ;
Hadithi, M ;
Groenen, MJM ;
Kuipers, EJ ;
Jacobs, MAJM ;
Mulder, CJJ .
ENDOSCOPY, 2006, 38 (01) :42-48
[9]   A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy [J].
Leenhardt, Romain ;
Vasseur, Pauline ;
Li, Cynthia ;
Saurin, Jean Christophe ;
Rahmi, Gabriel ;
Cholet, Franck ;
Becq, Aymeric ;
Marteau, Philippe ;
Histace, Aymeric ;
Dray, Xavier .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (01) :189-194
[10]   Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth [J].
Luo, Xiaobei ;
Wang, Jiahao ;
Han, Zelong ;
Yu, Yang ;
Chen, Zhenyu ;
Huang, Feiyang ;
Xu, Yumeng ;
Cai, Jianqun ;
Zhang, Qiang ;
Qiao, Weiguang ;
Ng, Inn Chuan ;
Tan, Robby T. ;
Liu, Side ;
Yu, Hanry .
GASTROINTESTINAL ENDOSCOPY, 2021, 94 (03) :627-+