Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer

被引:31
作者
Casper, Pascal [1 ]
Huenig, Ruben [1 ]
Gomard, Guillaume [1 ,2 ]
Kiowski, Oliver [3 ]
Reitz, Christian [4 ]
Lemmer, Uli [1 ,2 ]
Powalla, Michael [1 ,3 ]
Hetterich, Michael [1 ,5 ]
机构
[1] Karlsruhe Inst Technol, Light Technol Inst, Engesserstr 13, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Ind Str 6, D-70565 Stuttgart, Germany
[4] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Appl Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2016年 / 10卷 / 05期
关键词
solar cells; Cu(In; Ga)Se-2; surface passivation; contacts; light management; MgF2; ELECTRICAL CHARACTERIZATION; EFFICIENCY;
D O I
10.1002/pssr.201600018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decreasing the absorber layer thickness of thin-film solar cells can be an effective solution for cost reduction of photovoltaic electricity generation. Unfortunately, this reduction leads to detrimental effects such as incomplete photon absorption and increased charge carrier recombination at the rear electrode. To tackle these losses in ultra-thin 0.5 mu m Cu(In,Ga)Se-2 (CIGS) solar cells, we developed different passivation structures made of MgF2 and Al2O3 at the molybdenum-CIGS interface, leading to localized back contacts. The influence of the distance between those contacts on the cell performance was studied by varying the periodicity of the applied 1D patterns from 6 mu m to 30 mu m. Thus, an increase in performance was measured for microstructured layers with a periodicity of up to 12 mu m. More precisely, a MgF2 layer yielded an increase in power conversion efficiency (PCE) of up to 9%(rel) compared to an unpassivated cell design, and a passivation layer comprising Al2O3 led to up to a 5%(rel) increase in PCE. The gains were primarily attributed to an increased reflectivity of the back contact, while the formation of a negative backside field in the case of Al2O3 might have contributed to this increase by preventing electrons from recombining at the backside interface. Our findings indicate a high lateral conductivity for holes inside the multicrystalline CIGS compound over few tens of micrometres, which allows an independent design of future back contacts and light-trapping schemes. [GRAPHICS] False-colour scanning electron microscopy cross-section picture of a passivated solar cell, with the front contact layers coloured in green, the 0.5 mu m CIGS absorber in dark red, the MgF2 passivation layer in blue, and the Mo back contact in grey. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [41] Control of oxygen for magnetron sputtered ZnO:Al window layer in Cu(In,Ga)Se2 thin film solar cells
    Niu, X.
    Zhu, H.
    Zhang, W.
    Laing, X.
    Guo, Y.
    Li, Z.
    Chen, J.
    Xu, Y.
    Mai, Y.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (10):
  • [42] Using hydrogen-doped In2O3 films as a transparent back contact in (Ag,Cu)(In,Ga)Se2 solar cells
    Keller, Jan
    Nilsson, Nina Shariati
    Aijaz, Asim
    Riekehr, Lars
    Kubart, Tomas
    Edoff, Marika
    Torndahl, Tobias
    [J]. PROGRESS IN PHOTOVOLTAICS, 2018, 26 (03): : 159 - 170
  • [43] Significant Passivation Effect of Cu(In, Ga)Se2 Solar Cells via Back Contact Surface Modification Using Oxygen Plasma
    Zeng, Longlong
    Zeng, Chunhong
    Liang, Yunfeng
    Yuan, Ye
    Yan, Genghua
    Hong, Ruijiang
    [J]. SOLAR RRL, 2021, 5 (03)
  • [44] Sodium-doped molybdenum back contact designs for Cu(In,Ga)Se2 solar cells
    Bloesch, P.
    Nishiwaki, S.
    Kranz, L.
    Fella, C. M.
    Pianezzi, F.
    Jaeger, T.
    Adelhelm, C.
    Franzke, E.
    Buecheler, S.
    Tiwari, A. N.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 : 10 - 16
  • [45] Reactively sputtered ZrN for application as reflecting back contact in Cu(In,Ga)Se2 solar cells
    Schleussner, S.
    Kubart, T.
    Torndahl, T.
    Edoff, M.
    [J]. THIN SOLID FILMS, 2009, 517 (18) : 5548 - 5552
  • [46] The use of HfO2 in a point contact concept for front interface passivation of Cu(In,Ga)Se2 solar cells
    Lockinger, Johannes
    Nishiwaki, Shiro
    Bissig, Benjamin
    Degutis, Giedrius
    Romanyuk, Yaroslav E.
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 195 : 213 - 219
  • [47] Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
    Romeo, A
    Terheggen, A
    Abou-Ras, D
    Bätzner, DL
    Haug, FJ
    Kälin, M
    Rudmann, D
    Tiwari, AN
    [J]. PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 93 - 111
  • [48] Cu(In, Ga)Se2 thin film solar cells grown at low temperatures
    Zhang, W.
    Zhu, H.
    Zhang, L.
    Guo, Y.
    Niu, X.
    Li, Z.
    Chen, J.
    Liu, Q.
    Mai, Y.
    [J]. SOLID-STATE ELECTRONICS, 2017, 132 : 57 - 63
  • [49] Solar Cells Based on Cu(In, Ga)Se2 Thin-Film Layers
    Kobulov R.R.
    Matchanov N.A.
    Ataboev O.K.
    Akbarov F.A.
    [J]. Applied Solar Energy (English translation of Geliotekhnika), 2019, 55 (02): : 83 - 90
  • [50] SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu(In, Ga)Se2 thin-film solar cells for space applications
    Shimazaki, Kazunori
    Imaizumi, Mitsuru
    Kibe, Koichi
    [J]. THIN SOLID FILMS, 2008, 516 (08) : 2218 - 2224