Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer

被引:31
作者
Casper, Pascal [1 ]
Huenig, Ruben [1 ]
Gomard, Guillaume [1 ,2 ]
Kiowski, Oliver [3 ]
Reitz, Christian [4 ]
Lemmer, Uli [1 ,2 ]
Powalla, Michael [1 ,3 ]
Hetterich, Michael [1 ,5 ]
机构
[1] Karlsruhe Inst Technol, Light Technol Inst, Engesserstr 13, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Ind Str 6, D-70565 Stuttgart, Germany
[4] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Appl Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2016年 / 10卷 / 05期
关键词
solar cells; Cu(In; Ga)Se-2; surface passivation; contacts; light management; MgF2; ELECTRICAL CHARACTERIZATION; EFFICIENCY;
D O I
10.1002/pssr.201600018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decreasing the absorber layer thickness of thin-film solar cells can be an effective solution for cost reduction of photovoltaic electricity generation. Unfortunately, this reduction leads to detrimental effects such as incomplete photon absorption and increased charge carrier recombination at the rear electrode. To tackle these losses in ultra-thin 0.5 mu m Cu(In,Ga)Se-2 (CIGS) solar cells, we developed different passivation structures made of MgF2 and Al2O3 at the molybdenum-CIGS interface, leading to localized back contacts. The influence of the distance between those contacts on the cell performance was studied by varying the periodicity of the applied 1D patterns from 6 mu m to 30 mu m. Thus, an increase in performance was measured for microstructured layers with a periodicity of up to 12 mu m. More precisely, a MgF2 layer yielded an increase in power conversion efficiency (PCE) of up to 9%(rel) compared to an unpassivated cell design, and a passivation layer comprising Al2O3 led to up to a 5%(rel) increase in PCE. The gains were primarily attributed to an increased reflectivity of the back contact, while the formation of a negative backside field in the case of Al2O3 might have contributed to this increase by preventing electrons from recombining at the backside interface. Our findings indicate a high lateral conductivity for holes inside the multicrystalline CIGS compound over few tens of micrometres, which allows an independent design of future back contacts and light-trapping schemes. [GRAPHICS] False-colour scanning electron microscopy cross-section picture of a passivated solar cell, with the front contact layers coloured in green, the 0.5 mu m CIGS absorber in dark red, the MgF2 passivation layer in blue, and the Mo back contact in grey. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:376 / 380
页数:5
相关论文
共 20 条
[1]  
[Anonymous], ASTM STAND TABL REF
[2]   Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells [J].
Dingemans, Gijs ;
Kessels, Erwin .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (04)
[3]   Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates [J].
Groner, MD ;
Elam, JW ;
Fabreguette, FH ;
George, SM .
THIN SOLID FILMS, 2002, 413 (1-2) :186-197
[4]   Diffusion barriers for CIGS solar cells on metallic substrates [J].
Herz, K ;
Eicke, A ;
Kessler, F ;
Wächter, R ;
Powalla, M .
THIN SOLID FILMS, 2003, 431 :392-397
[5]   The influence of sodium on the molybdenum/Cu(In,Ga)Se2 interface recombination velocity, determined by time resolved photoluminescence [J].
Jarzembowski, Enrico ;
Syrowatka, Frank ;
Kaufmann, Kai ;
Fraenzel, Wolfgang ;
Hoelscher, Torsten ;
Scheer, Roland .
APPLIED PHYSICS LETTERS, 2015, 107 (05)
[6]   Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness [J].
Jarzembowski, Enrico ;
Maiberg, Matthias ;
Obereigner, Florian ;
Kaufmann, Kai ;
Krause, Stephan ;
Scheer, Roland .
THIN SOLID FILMS, 2015, 576 :75-80
[7]   Investigating the electronic properties of Al2O3/Cu(In, Ga)Se2 interface [J].
Kotipalli, R. ;
Vermang, B. ;
Joel, J. ;
Rajkumar, R. ;
Edoff, M. ;
Flandre, D. .
AIP ADVANCES, 2015, 5 (10)
[8]   Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering [J].
Li-Kao, Zacharie Jehl ;
Naghavi, Negar ;
Erfurth, Felix ;
Guillemoles, Jean Francois ;
Gerard, Isabelle ;
Etcheberry, Arnaud ;
Pelouard, Jean Luc ;
Collin, Stephane ;
Voorwinden, Georg ;
Lincot, Daniel .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (05) :582-587
[9]   Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells [J].
Metzger, W. K. ;
Repins, I. L. ;
Romero, M. ;
Dippo, P. ;
Contreras, M. ;
Noufi, R. ;
Levi, D. .
THIN SOLID FILMS, 2009, 517 (07) :2360-2364
[10]   Dielectric function of Cu(In, Ga)Se2-based polycrystalline materials [J].
Minoura, Shota ;
Kodera, Keita ;
Maekawa, Takuji ;
Miyazaki, Kenichi ;
Niki, Shigeru ;
Fujiwara, Hiroyuki .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)