Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer

被引:31
作者
Casper, Pascal [1 ]
Huenig, Ruben [1 ]
Gomard, Guillaume [1 ,2 ]
Kiowski, Oliver [3 ]
Reitz, Christian [4 ]
Lemmer, Uli [1 ,2 ]
Powalla, Michael [1 ,3 ]
Hetterich, Michael [1 ,5 ]
机构
[1] Karlsruhe Inst Technol, Light Technol Inst, Engesserstr 13, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Ind Str 6, D-70565 Stuttgart, Germany
[4] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Appl Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2016年 / 10卷 / 05期
关键词
solar cells; Cu(In; Ga)Se-2; surface passivation; contacts; light management; MgF2; ELECTRICAL CHARACTERIZATION; EFFICIENCY;
D O I
10.1002/pssr.201600018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decreasing the absorber layer thickness of thin-film solar cells can be an effective solution for cost reduction of photovoltaic electricity generation. Unfortunately, this reduction leads to detrimental effects such as incomplete photon absorption and increased charge carrier recombination at the rear electrode. To tackle these losses in ultra-thin 0.5 mu m Cu(In,Ga)Se-2 (CIGS) solar cells, we developed different passivation structures made of MgF2 and Al2O3 at the molybdenum-CIGS interface, leading to localized back contacts. The influence of the distance between those contacts on the cell performance was studied by varying the periodicity of the applied 1D patterns from 6 mu m to 30 mu m. Thus, an increase in performance was measured for microstructured layers with a periodicity of up to 12 mu m. More precisely, a MgF2 layer yielded an increase in power conversion efficiency (PCE) of up to 9%(rel) compared to an unpassivated cell design, and a passivation layer comprising Al2O3 led to up to a 5%(rel) increase in PCE. The gains were primarily attributed to an increased reflectivity of the back contact, while the formation of a negative backside field in the case of Al2O3 might have contributed to this increase by preventing electrons from recombining at the backside interface. Our findings indicate a high lateral conductivity for holes inside the multicrystalline CIGS compound over few tens of micrometres, which allows an independent design of future back contacts and light-trapping schemes. [GRAPHICS] False-colour scanning electron microscopy cross-section picture of a passivated solar cell, with the front contact layers coloured in green, the 0.5 mu m CIGS absorber in dark red, the MgF2 passivation layer in blue, and the Mo back contact in grey. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [1] On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga) Se2 solar cells
    Keller, Jan
    Gustavsson, Fredrik
    Stolt, Lars
    Edoff, Marika
    Torndahl, Tobias
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 189 - 196
  • [2] Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In,Ga)Se2 solar cells
    Mollica, F.
    Goffard, J.
    Jubault, M.
    Donsanti, F.
    Collin, S.
    Cattoni, A.
    Lombez, L.
    Naghavi, N.
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2213 - 2217
  • [3] Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits
    Curado, M. A.
    Teixeira, J. P.
    Monteiro, M.
    Ribeiro, E. F. M.
    Vilao, R. C.
    Alberto, H. V.
    Cunha, J. M. V.
    Lopes, T. S.
    Oliveira, K.
    Donzel-Gargand, O.
    Hultqvist, A.
    Calderon, S.
    Barreiros, M. A.
    Chiappim, W.
    Leitao, J. P.
    Silva, A. G.
    Prokscha, T.
    Vinhais, C.
    Fernandes, P. A.
    Salome, P. M. P.
    APPLIED MATERIALS TODAY, 2020, 21
  • [4] A Combination of Silver Nanowires and Al2O3 to Replace ITO and MgF2 in a Cu(In,Ga)Se2 Thin-Film Solar Cell
    Kang, Seoin
    Chung, Choong-Heui
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (12)
  • [5] Epitaxial Cu(In,Ga)Se2 Thin Films on Mo Back Contact for Solar Cells
    Ando, Yuta
    Khatri, Ishwor
    Matsumori, Hironori
    Sugiyama, Mutsumi
    Nakada, Tokio
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (16):
  • [6] Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga) Se2 solar cells
    Vermang, Bart
    Watjen, Jorn Timo
    Fjallstrom, Viktor
    Rostvall, Fredrik
    Edoff, Marika
    Gunnarsson, Rickard
    Pilch, Iris
    Helmersson, Ulf
    Kotipalli, Ratan
    Henry, Frederic
    Flandre, Denis
    THIN SOLID FILMS, 2015, 582 : 300 - 303
  • [7] Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3
    Hsu, W. -W.
    Chen, J. Y.
    Cheng, T. -H.
    Lu, S. C.
    Ho, W. -S.
    Chen, Y. -Y.
    Chien, Y. -J.
    Liu, C. W.
    APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [8] Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells
    Mansfield, Lorelle M.
    Kanevce, Ana
    Harvey, Steven P.
    Bowers, Karen
    Beall, Carolyn
    Glynn, Stephen
    Repins, Ingrid L.
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (11): : 949 - 954
  • [9] Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers
    Ledinek, Dorothea
    Donzel-Gargand, Olivier
    Skold, Markus
    Keller, Jan
    Edoff, Marika
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 187 : 160 - 169
  • [10] Effect of NaF pre-cursor on alumina and hafnia rear contact passivation layers in ultra-thin Cu(In,Ga)Se2 solar cells
    Ledinek, Dorothea
    Keller, Jan
    Hagglund, Carl
    Chen, Wei-Chao
    Edoff, Marika
    THIN SOLID FILMS, 2019, 683 : 156 - 164