Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries

被引:11
作者
Hamrahjoo, Mahtab [1 ,2 ]
Hadad, Saeed [1 ,2 ]
Dehghani, Elham [1 ,2 ]
Salami-Kalajahi, Mehdi [1 ,2 ]
Roghani-Mamaqani, Hossein [1 ,2 ]
机构
[1] Sahand Univ Technol, Fac Polymer Engn, POB 51335-1996, Tabriz, Iran
[2] Sahand Univ Technol, Inst Polymer Mat, POB 51335-1996, Tabriz, Iran
基金
美国国家科学基金会;
关键词
Lithium ion battery; Graphene; Nanocomposite gel polymer electrolytes; Reversible addition-fragmentation chain transfer polymerization; POLY(ETHYLENE OXIDE); GRAPHENE; LIQUID; CONDUCTIVITY; TRANSPORT; PERFORMANCES; SEPARATOR; COMPOSITE; ENERGY;
D O I
10.1016/j.eurpolymj.2022.111419
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A structural design and appropriate morphology of polymer-functionalized graphene oxide are occupied to optimize nanocomposite polymer electrolytes. The nanocomposite gel polymer electrolytes (GPEs) based on poly (poly (ethylene glycol) methyl ether methacrylate and RAFT agent-functionalized graphene oxide [P(PEGMA/ GO-S-(thiobenzoyl)thioglycolic acid (STTA))] have been successfully prepared by in-situ polymerization method in different ratio of GO-STTA and crosslinking by poly(ethylene glycol) diallyl (PEGDA). The P(PEGMA/ GO-STTA) GPE with 0.5 wt% of GO-STTA exhibited a high ionic conductivity of 5.5 mS cm(-1) at room tem-perature, a superior lithium transfer number (t+) value of 0.61, and electrochemical window up 4.7 V. The GPE based P(PEGMA/GO-STTA0.5%) indicated 92% coulombic efficiency, the charge capacity value of 191.7 mAh g(-1) potential for lithium ion battery with high safety and long cycle life. , and capacity retention was about 92% after 100 cycles at 0.1C. P(PEGMA/GO-STTA) GPEs showed great potential for lithium ion battery with high safety and long cycle life.
引用
收藏
页数:10
相关论文
共 63 条
  • [1] Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system
    Abdollahi, Elaheh
    Khalafi-Nezhad, Ali
    Mohammadi, Ali
    Abdouss, Majid
    Salami-Kalajahi, Mehdi
    [J]. POLYMER, 2018, 143 : 245 - 257
  • [2] Polymer electrolytes for lithium ion batteries: a critical study
    Arya, Anil
    Sharma, A. L.
    [J]. IONICS, 2017, 23 (03) : 497 - 540
  • [3] Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery
    Baskoro, Febri
    Wong, Hui Qi
    Yen, Hung-Ju
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (06): : 3937 - 3971
  • [4] Forthcoming perspectives of photoelectrochromic devices: a critical review
    Cannavale, Alessandro
    Cossari, Pierluigi
    Eperon, Giles E.
    Colella, Silvia
    Fiorito, Francesco
    Gigli, Giuseppe
    Snaith, Henry J.
    Listorti, Andrea
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (09) : 2682 - 2719
  • [5] A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment
    Chabot, Victor
    Higgins, Drew
    Yu, Aiping
    Xiao, Xingcheng
    Chen, Zhongwei
    Zhang, Jiujun
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1564 - 1596
  • [6] High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries
    Chen, Xiaoyi
    Yi, Lingguang
    Zou, Changfei
    Liu, Jiali
    Yu, Jun
    Zang, Zihao
    Tao, Xiyuan
    Luo, Zhigao
    Guo, Xiaowei
    Chen, Gairong
    Chang, Baobao
    Shen, Yongqiang
    Wang, Xianyou
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 5267 - 5276
  • [7] Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries
    Choi, Keun-Ho
    Kim, Se-Hee
    Ha, Hyo-Jeong
    Kil, Eun-Hye
    Lee, Chang Kee
    Lee, Sang Bong
    Shim, Jin Kie
    Lee, Sang-Young
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) : 5224 - 5231
  • [8] Composite of polyvinylidene fluoride-cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery
    Cui, Jinqiang
    Liu, Jiuqing
    He, Chunfeng
    Li, Jie
    Wu, Xiufeng
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2017, 541 : 661 - 667
  • [9] Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives
    Eshetu, Gebrekidan Gebresilassie
    Elia, Giuseppe Antonio
    Armand, Michel
    Forsyth, Maria
    Komaba, Shinichi
    Rojo, Teofilo
    Passerini, Stefano
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (20)
  • [10] Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
    Ferrari, Andrea C.
    Bonaccorso, Francesco
    Fal'ko, Vladimir
    Novoselov, Konstantin S.
    Roche, Stephan
    Boggild, Peter
    Borini, Stefano
    Koppens, Frank H. L.
    Palermo, Vincenzo
    Pugno, Nicola
    Garrido, Jose A.
    Sordan, Roman
    Bianco, Alberto
    Ballerini, Laura
    Prato, Maurizio
    Lidorikis, Elefterios
    Kivioja, Jani
    Marinelli, Claudio
    Ryhaenen, Tapani
    Morpurgo, Alberto
    Coleman, Jonathan N.
    Nicolosi, Valeria
    Colombo, Luigi
    Fert, Albert
    Garcia-Hernandez, Mar
    Bachtold, Adrian
    Schneider, Gregory F.
    Guinea, Francisco
    Dekker, Cees
    Barbone, Matteo
    Sun, Zhipei
    Galiotis, Costas
    Grigorenko, Alexander N.
    Konstantatos, Gerasimos
    Kis, Andras
    Katsnelson, Mikhail
    Vandersypen, Lieven
    Loiseau, Annick
    Morandi, Vittorio
    Neumaier, Daniel
    Treossi, Emanuele
    Pellegrini, Vittorio
    Polini, Marco
    Tredicucci, Alessandro
    Williams, Gareth M.
    Hong, Byung Hee
    Ahn, Jong-Hyun
    Kim, Jong Min
    Zirath, Herbert
    van Wees, Bart J.
    [J]. NANOSCALE, 2015, 7 (11) : 4598 - 4810