COMPLEX PRODUCT STRUCTURES ON HOM-LIE ALGEBRAS

被引:9
作者
Nourmohammadifar, L. [1 ]
Peyghan, E. [1 ]
机构
[1] Arak Univ, Dept Math, Fac Sci, Arak 3815688349, Iran
关键词
KAHLER;
D O I
10.1017/S001708951800006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of complex product structures on hom-Lie algebras and show that a hom-Lie algebra carrying a complex product structure is a double hom-Lie algebra and it is also endowed with a hom-left symmetric product. Moreover, we show that a complex product structure on a hom-Lie algebra determines uniquely a left symmetric product such that the complex and the product structures are invariant with respect to it. Finally, we introduce the notion of hyper-para-Kahler hom-Lie algebras and we present an example of hyper-para-Kahler hom-Lie algebras.
引用
收藏
页码:69 / 84
页数:16
相关论文
共 18 条
[1]  
Ammar F, 2011, J LIE THEORY, V21, P813
[2]   Complex product structures on Lie algebras [J].
Andrada, A ;
Salamon, S .
FORUM MATHEMATICUM, 2005, 17 (02) :261-295
[3]   Complex product structures on 6-dimensional nilpotent Lie algebras [J].
Andrada, Adrian .
FORUM MATHEMATICUM, 2008, 20 (02) :285-315
[4]   On para-Kahler and hyper-para-Kahler Lie algebras [J].
Benayadi, Said ;
Boucetta, Mohamed .
JOURNAL OF ALGEBRA, 2015, 436 :61-101
[5]   On Paraquaternionic Submersions Between Paraquaternionic Kahler Manifolds [J].
Caldarella, Angelo V. .
ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (01) :1-14
[6]  
Campoamor-Stursberg R., 2015, INT J MATH, V26, P1
[7]   Compact complex surfaces with geometric structures related to split quaternions [J].
Davidov, Johann ;
Grantcharov, Gueo ;
Mushkarov, Oleg ;
Yotov, Miroslav .
NUCLEAR PHYSICS B, 2012, 865 (02) :330-352
[8]   Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities [J].
Larsson, D ;
Silvestrov, SD .
JOURNAL OF ALGEBRA, 2005, 288 (02) :321-344
[9]   Universal algebra of a Horn-Lie algebra and group-like elements [J].
Laurent-Gengoux, Camille ;
Makhlouf, Abdenacer ;
Teles, Joana .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (05) :1139-1163
[10]  
Li XX, 2007, J NONLINEAR MATH PHY, V14, P269, DOI 10.2991/jnmp.2007.14.2.9