On Chern's problem for rigidity of minimal hypersurfaces in the spheres

被引:45
作者
Ding, Qi [1 ]
Xin, Y. L. [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
Minimal hypersurface; Pinching problem; Clifford minimal hypersurface; Intrinsic rigidity; SCALAR CURVATURE;
D O I
10.1016/j.aim.2011.01.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact minimal hypersurface M in Sn+1 with the squared length of the second fundamental form S we confirm that there exists a positive constant delta(n) depending only on a, such that if n <= S <= n + delta(n), then S equivalent to n, i.e., M is a Clifford minimal hypersurface, in particular, when n >= 6, the pinching constant delta(n) = n/23. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 13 条
[1]  
[Anonymous], ANN MATH STUD
[2]   A characterization of the Clifford torus [J].
Cheng, QM ;
Ishikawa, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) :819-828
[3]  
Chern SS, 1970, FUNCTIONAL ANAL RELA
[4]  
Lawson B., 1969, ANN MATH, V89, P187
[5]   THE SCALAR CURVATURE OF MINIMAL HYPERSURFACES IN SPHERES [J].
PENG, CK ;
TERNG, CL .
MATHEMATISCHE ANNALEN, 1983, 266 (01) :105-113
[6]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&
[7]   The scalar curvature of minimal hypersurfaces in a unit sphere [J].
Suh, Young Jin ;
Yang, Hae Young .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (02) :183-200
[8]  
Wei SM, 2007, MATH RES LETT, V14, P423
[9]  
Xin Y.L., 2003, MINIMAL SUBMANIFOLDS
[10]   Chern's conjecture on minimal hypersurfaces [J].
Yang, HC ;
Cheng, QM .
MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (03) :377-390