LIOUVILLE-TYPE THEOREM FOR HIGH ORDER DEGENERATE LANE-EMDEN SYSTEM

被引:1
作者
Guo, Yuxia [1 ]
Liu, Ting [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Liouville-type results; high order; degenerate elliptic system; the method of moving plane; Rellich-type identity; ASYMPTOTIC SYMMETRY; ELLIPTIC-EQUATIONS; CLASSIFICATION;
D O I
10.3934/dcds.2021184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following high order degenerate elliptic system: {(-A)(m)u = v(p) (-A)(m)v = u(q) in R-+(n+1) := {(x, y)vertical bar x is an element of R-n, y > 0}, (1) u >= 0, v >= 0 where the operator A := y partial derivative(2)(y) + a partial derivative(y) + Delta(x), a >= 1 and n + 2a > 2m, m is an element of Z(+), p, q >= 1. We prove the non-existence of positive smooth solutions for 1 < p, q < n+2a+m/n+2a-2m, and classify positive solutions for p = q = n+2a+2m/n+2a-2m, For 1/p+1 + 1/q+1 > n+2a-2m/n+2a, we show the non-existence of positive, ellipse- radial, smooth solutions. Moreover we prove the non-existence of positive smooth solutions for the high order degenerate elliptic system of inequalities (-A)(m)u >= v(p), (-A)(m)v >= u(q), u >= 0, v >= 0, in R-+(n)+1 for either (n+2a-2m)q < n+2a/p + 2m or (n + 2a - 2m)p < n+2a/q + 2m with p, q > 1.
引用
收藏
页码:2073 / 2100
页数:28
相关论文
共 17 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[3]  
CLEMENT P, 1993, COMMUN PART DIFF EQ, V18, P2071, DOI 10.1080/03605309308821005
[4]  
Gidas B., 1981, ADV MATH SUPPLEMEN A, P369
[5]   CLASSIFICATION FOR POSITIVE SOLUTIONS OF DEGENERATE ELLIPTIC SYSTEM [J].
Guo, Yuxia ;
Nie, Jianjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1457-1475
[6]   Compactness of Alexandrov-Nirenberg Surfaces [J].
Han, Qing ;
Hong, Jiaxing ;
Huang, Genggeng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (09) :1706-1753
[7]   A Liouville theorem for high order degenerate elliptic equations [J].
Huang, Genggeng ;
Li, Congming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) :1229-1251
[8]   A priori bounds for a class of semi-linear degenerate elliptic equations [J].
Huang GengGeng .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) :1911-1926
[9]   A LIOUVILLE THEOREM OF DEGENERATE ELLIPTIC EQUATION AND ITS APPLICATION [J].
Huang, Genggeng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (10) :4549-4566
[10]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/s002220050023