Two-dimensional materials for improved resolution in total internal reflection fluorescence microscopy

被引:3
作者
Uddin, Shiekh Zia [1 ]
Talukder, Muhammad Anisuzzaman [1 ,2 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka 1205, Bangladesh
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
two-dimensional material; total internal reflection; fluorescence microscopy; HEXAGONAL BORON-NITRIDE; FIELD-EFFECT TRANSISTORS; LAYER BLACK PHOSPHORUS; BROAD-BAND; GRAPHENE; ELECTRONICS; BIOLOGY; OPTICS;
D O I
10.1088/2053-1591/aa8a0f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose and theoretically demonstrate that two-dimensional materials at the interface between glass and water layers in a total internal reflection fluorescence microscopy (TIRFM) technique can decrease the detection volume of a target sample, and hence improve the resolution of the obtained image. In particular, we calculate the change in fluorescence characteristics of the fluorophore labels on a target sample when monolayer black phosphorus, hexagonal boron nitride, and graphene are added at the glass-water interface of a TIRFM structure. We also calculate the change in the detection volume due to the presence of two-dimensional materials, and when the polarization, wavelength, and angle of the incident light vary. We find greater than or similar to 10% and greater than or similar to 5% decrease in the detection volume when monolayer black phosphorus and hexagonal boron nitride are used, respectively, and up to greater than or similar to 50% decrease when monolayer graphene is used. The proposed use of the two-dimensional material will significantly improve the resolution of TIRFM technique, and hence facilitate the study of nanoscale biological features.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2014, MATER, DOI DOI 10.1088/2053-1583/1/2/025001
[2]  
AXELROD D, 1989, METHOD CELL BIOL, V30, P245
[3]   Total internal reflection fluorescence microscopy in cell biology [J].
Axelrod, D .
TRAFFIC, 2001, 2 (11) :764-774
[4]  
Axelrod D., 2002, Topics in Fluorescence Spectroscopy, V3, P289
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[7]   Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors [J].
Buscema, Michele ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2014, 14 (06) :3347-3352
[8]   Infrared reflectance spectrum of BN calculated from first principles [J].
Cai, Yongqing ;
Zhang, Litong ;
Zeng, Qingfeng ;
Cheng, Laifei ;
Xu, Yongdong .
SOLID STATE COMMUNICATIONS, 2007, 141 (05) :262-266
[9]  
Dai S, 2015, NAT NANOTECHNOL, V10, P682, DOI [10.1038/nnano.2015.131, 10.1038/NNANO.2015.131]
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726