Solution-Grown Chloride Perovskite Crystal of Red Afterglow

被引:102
作者
Zheng, Wei [1 ]
Li, Xiuling [1 ]
Liu, Nianqiao [1 ,2 ]
Yan, Shao [4 ]
Wang, Xiaojia [1 ]
Zhang, Xiangzhou [1 ]
Liu, Yeqi [1 ]
Liang, Yanjie [4 ]
Zhang, Yuhai [1 ]
Liu, Hong [1 ,3 ]
机构
[1] Univ Jinan, Inst Adv Interdisciplinary Res iAIR, Collaborat Innovat Ctr Technol & Equipment Biol D, Jinan 250022, Shandong, Peoples R China
[2] Univ Jinan, Sch Phys & Technol, Jinan 250022, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, 27 Shandanan Rd, Jinan 250100, Shandong, Peoples R China
[4] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
doped chloride perovskite; double perovskites; hydrothermal synthesis; red afterglow crystals; self-trapped excitons; PHOSPHORESCENCE;
D O I
10.1002/anie.202110308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the growth of a halide-based double perovskite, Cs2NaxAg1-xInCl6:y%Mn, via a facile hydrothermal reaction at 180 degrees C. Through a co-doping strategy of both Na+ and Mn2+, the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+, was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.
引用
收藏
页码:24450 / 24455
页数:6
相关论文
共 40 条
[1]  
An ZF, 2015, NAT MATER, V14, P685, DOI [10.1038/nmat4259, 10.1038/NMAT4259]
[2]   Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly [J].
Bian, Lifang ;
Shi, Huifang ;
Wang, Xuan ;
Ling, Kun ;
Ma, Huili ;
Li, Mengpin ;
Cheng, Zhichao ;
Ma, Chaoqun ;
Cai, Suzhi ;
Wu, Qi ;
Gan, Nan ;
Xu, Xiangfei ;
An, Zhongfu ;
Huang, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (34) :10734-10739
[3]   TUNNELING RECOMBINATION OF TRAPPED ELECTRONS AND HOLES IN KCL-AGCL AND KCL-TLCL [J].
DELBECQ, CJ ;
TOYOZAWA, Y ;
YUSTER, PH .
PHYSICAL REVIEW B, 1974, 9 (10) :4497-4505
[4]  
Deng RR, 2015, NAT NANOTECHNOL, V10, P237, DOI [10.1038/nnano.2014.317, 10.1038/NNANO.2014.317]
[5]   Enhancing the phosphorescence of hybrid metal halides through molecular sensitization [J].
Gong, Liao-Kuo ;
Li, Jian-Rong ;
Wu, Zhao-Feng ;
Hu, Bing ;
Wang, Ze-Ping ;
Shen, Nan-Nan ;
Hu, Qian-Qian ;
Deng, Zhong-Hua ;
Zhang, Zhi-Zhuan ;
Fu, Jing-Jing ;
Du, Ke-Zhao ;
Huang, Xiao-Ying .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (32) :9803-9807
[6]  
Hagerman M., 2006, SHRIVER ATKINS INORG
[7]  
Han K., 2021, ANGEW CHEM, V133, P19805
[8]   Efficient Room-Temperature Phosphorescence from Organic-Inorganic Hybrid Perovskites by Molecular Engineering [J].
Hu, Hongwei ;
Meier, Fabian ;
Zhao, Daming ;
Abe, Yuichiro ;
Gao, Yang ;
Chen, Bingbing ;
Salim, Teddy ;
Chia, Elbert E. M. ;
Qiao, Xianfeng ;
Deibel, Carsten ;
Lam, Yeng Ming .
ADVANCED MATERIALS, 2018, 30 (36)
[9]   Modeling and Assessment of Afterglow Decay Curves from Thermally Stimulated Luminescence of Complex Garnets [J].
Khanin, Vasilii M. ;
Vrubel, Ivan I. ;
Polozkov, Roman G. ;
Shelykh, Ivan A. ;
Venevtsev, Ivan D. ;
Meijerink, Andries ;
Wieczorek, Herfried ;
Boerekamp, Jack ;
Spoor, Sandra ;
Rodnyi, Piotr A. ;
Ronda, Cees .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (09) :1894-1903
[10]   Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color-Tunable Emission [J].
Kong, Qingkun ;
Yang, Bin ;
Chen, Junsheng ;
Zhang, Ruiling ;
Liu, Siping ;
Zheng, Daoyuan ;
Zhang, Hongling ;
Liu, Qingtong ;
Wang, Yiying ;
Han, Keli .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (36) :19653-19659