Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method

被引:51
|
作者
Fourey, G. [1 ]
Oger, G. [2 ]
Le Touze, D. [1 ]
Alessandrini, B. [1 ]
机构
[1] CNRS, Ecole Cent Nantes, Fluid Mech Lab, Nantes, France
[2] HydrOcean, Nantes, France
来源
9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS | 2010年 / 10卷
关键词
FREE-SURFACE; FORMULATION; SOLIDS;
D O I
10.1088/1757-899X/10/1/012041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Smoothed Particle Hydrodynamics (SPH) method presents different key assets for modelling violent Fluid-Structure Interactions (FSI). First, this method is a meshless method, which drastically reduces the complexity of handling the fluid-structure interface when using SPH to model the fluid and coupling it with a Finite Element Method (FEM) for the solid. Second, the method is Lagrangian and large deformations of the fluid domain can thus be followed, which is especially interesting for simulating violent interactions in presence of a free surface, or which induce large deformations, rotations, and translations of the solid. Third, the SPH method being explicit, the time scale of the SPH resolution in the fluid domain is naturally adapted to the FEM resolution in the solid. Free-surface FSIs can also be simulated without including the air phase when it does not play a significative role. For violent interactions where the fluid compressibility matters, it is also intrinsically modelled by the SPH method. The paper details the SPH method used and the coupling. The FEM solver is a standard open source solver for solid mechanics. Validation test cases are then presented in detail. They include the hydrodynamic impact of elastic wedges at high speed, where local pressures and wedge deformations are compared to experimental data.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Fluid-Structure Interaction Modeling by ALE and SPH
    Guo Baodong
    Qu Qiulin
    Wu Jiali
    Liu Peiqing
    APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 : 393 - 397
  • [22] Numerical simulation of fluid-structure interaction by SPH
    Antoci, Carla
    Gallati, Mario
    Sibilla, Stefano
    COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 879 - 890
  • [23] A coupled SPH-SPIM solver for fluid-structure interaction with nonlinear deformation
    Yang, Xi
    Liang, Guangqi
    Zhang, Guiyong
    Zhang, Zhifan
    Sun, Zhe
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [24] A modal method for coupled fluid-structure interaction analysis
    Li, S
    Zhao, DY
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2004, 12 (02) : 217 - 231
  • [25] Dealing with the Effect of Air in Fluid Structure Interaction by Coupled SPH-FEM Methods
    Fragassa, Cristiano
    Topalovic, Marko
    Pavlovic, Ana
    Vulovic, Snezana
    MATERIALS, 2019, 12 (07)
  • [26] Supercomputer simulations of fluid-structure interaction problems using an immersed boundary method
    Zhdanova N.S.
    Gorobets A.V.
    Abalakin I.V.
    2018, South Ural State University, Publishing Center (05) : 78 - 82
  • [27] FULLY COUPLED FLUID-STRUCTURE INTERACTION SIMULATIONS OF VOCAL FOLD VIBRATION
    Zhang, Lucy T.
    Wang, Xingshi
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING - 2010 - VOL 3, PTS A AND B, 2010, : 447 - 450
  • [28] An integrative SPH method for heat transfer problems involving fluid-structure interaction
    Tang, Xiaojing
    Zhang, Chi
    Haidn, Oskar
    Hu, Xiangyu
    ACTA MECHANICA SINICA, 2023, 39 (02)
  • [29] Modeling accidental-type fluid-structure interaction problems with the SPH method
    Potapov, S.
    Maurel, B.
    Combescure, A.
    Fabis, J.
    COMPUTERS & STRUCTURES, 2009, 87 (11-12) : 721 - 734
  • [30] A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method
    Meng, Zi-Fei
    Zhang, A-Man
    Yan, Jia-Le
    Wang, Ping-Ping
    Khayyer, Abbas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390