Rough path integral of local time

被引:4
作者
Feng, Chunrong [1 ,2 ,3 ]
Zhao, Huaizhong [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
D O I
10.1016/j.crma.2008.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, for a continuous semimartingale local time L-t(x), we establish the integral integral(infinity)(-infinity) g(x) dL(t)(x) as a rough path integral for any finite q-variation function g (2 <= q < 3) by using Lyons' rough path integration. We therefore obtain the Tanaka-Meyer formula for a continuous function f if del(-) f exists and is of finite q-variation, 2 <= q < 3. The case when 1 <= q < 2 was established by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration of local times, Potential Analysis 25 (2006) 165-204] using the Young integral.
引用
收藏
页码:431 / 434
页数:4
相关论文
共 5 条
[1]   Two-parameter p,q-variation paths and integrations of local times [J].
Feng, Chunrong ;
Zhao, Huaizhong .
POTENTIAL ANALYSIS, 2006, 25 (02) :165-204
[2]  
Karatzas I., 1998, Brownian Motion and Stochastic Calculus, Vsecond
[3]  
Lejay A., 2003, LECT NOTES MATH, P1, DOI DOI 10.1007/978-3-540-40004-2_
[4]  
Lyons T., 2002, SYSTEM CONTROL ROUGH, DOI DOI 10.1093/ACPROF:OSO/9780198506485.001.0001
[5]  
REVUZ D, 1994, CONTINUOUS MARTINGAL