Chlorophyll-a Concentration in Water: A Semi-analytical Retrieval Model Research with a BP Network

被引:0
作者
Zhan, Li-Li [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Peoples R China
[2] State Bur Surveying & Mapping, Key Lab Surveying & Mapping Technol Isl & Reef, Qingdao 266590, Peoples R China
来源
FUZZY SYSTEM AND DATA MINING | 2016年 / 281卷
关键词
Chlorophyll-a concentration; Three Band Algorithm; semi-analytic model; BP network; LAKE;
D O I
10.3233/978-1-61499-619-4-151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The chlorophyll-a concentration of water from Nansihu Lake of Shandong Province, China was analyzed using hyperspectral data with a semi-analytic model. First, three bands of the hyperspectral data centered at 660nm, 708nm and 812nm were chosen based on iterative optimization analysis. Then, the linear-TBA model, the poly-TBA model, and the BP-TBA model were used to determine chlorophyll concentration. Field data were used to validate the results and performances of three different models. The validation results indicated that the BP-TBA model achieved the highest accuracy with a mean relative error of 0.2268 in the training data set and 0.1983 in the validation data set. However, the BP-TBA model was not fit for turbid coastal water. When the chlorophyll-a concentration exceeded 0.03mg/L, the error increased, demonstrating a mean of 0.364.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
[41]   Retrieval of Chlorophyll-a in Lower Reaches of the Minjiang River Via Three-Band Bio-Optical Model [J].
Xie Tingting ;
Chen Yunzhi ;
Lu Wenfang .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (07)
[42]   Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model [J].
Ying, Chen ;
Xiao, Li ;
Zhao, Xueliang ;
Song, Wenyang ;
Xu, Chongxuan .
OCEAN MODELLING, 2023, 186
[43]   BP network model research on water and salt transfer forecast in seasonal freezing and thawing soils [J].
Li Ruiping ;
Shi Haibing ;
Zou Chunxia .
EFFECTIVE UTILIZATION OF AGRICULTURAL SOIL & WATER RESOURCES AND PROTECTION OF ENVIRONMENT, 2007, :129-133
[44]   Developing algorithm for estimating chlorophyll-a concentration in the Thac Ba Reservoir surface water using Landsat 8 Imagery [J].
Pham Quang Vinh ;
Nguyen Thi Thu Ha ;
Nguyen Thanh Binh ;
Nguyen Ngoc Thang ;
La Thi Oanh ;
Nguyen Thien Phuong Thao .
VIETNAM JOURNAL OF EARTH SCIENCES, 2019, 41 (01) :10-20
[45]   Prediction of daily chlorophyll-a concentration in rivers by water quality parameters using an efficient data-driven model: online sequential extreme learning machine [J].
Meysam Alizamir ;
Salim Heddam ;
Sungwon Kim ;
Alireza Docheshmeh Gorgij ;
Peiyue Li ;
Kaywan Othman Ahmed ;
Vijay P. Singh .
Acta Geophysica, 2021, 69 :2339-2361
[46]   Prediction of daily chlorophyll-a concentration in rivers by water quality parameters using an efficient data-driven model: online sequential extreme learning machine [J].
Alizamir, Meysam ;
Heddam, Salim ;
Kim, Sungwon ;
Gorgij, Alireza Docheshmeh ;
Li, Peiyue ;
Ahmed, Kaywan Othman ;
Singh, Vijay P. .
ACTA GEOPHYSICA, 2021, 69 (06) :2339-2361
[47]   Optimization of convolutional neural network with dual attention mechanism: Estimation of chlorophyll-a concentration in the Taiwan Strait using MODIS data [J].
Yu, Dingfeng ;
Jiang, Guanghao ;
Gao, Hao ;
Ren, Lirong ;
Chen, Chen ;
Yang, Lei ;
Zhou, Maosheng ;
Pan, Shunqi .
ESTUARINE COASTAL AND SHELF SCIENCE, 2024, 300
[48]   Remote chlorophyll-a retrieval in Case-II waters using an improved model and IRS-P6 satellite data [J].
Xu, Jing-Ping ;
Li, Fang ;
Zhang, Bai ;
Gu, Xing-Fa ;
Yu, Tao .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (17-18) :4609-4623
[49]   A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs [J].
Yu, Wenqing ;
Wang, Xingju ;
Jiang, Xin ;
Zhao, Ranhang ;
Zhao, Shen .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) :406-421
[50]   Remote sensing of chlorophyll-a concentration for drinking water source using genetic algorithms (GA)-partial least square (PLS) modeling [J].
Song, Kaishan ;
Lu, Dongmei ;
Li, Lin ;
Li, Shuai ;
Wang, Zongming ;
Du, Jia .
ECOLOGICAL INFORMATICS, 2012, 10 :25-36