On Lie groups and Toda lattices

被引:4
作者
Kruglinskaya, O. [1 ]
Marshakov, A.
机构
[1] NRU HSE, Inst Theoret & Expt Phys, Lebedev Phys Inst, Dept Math,Theory Dept, Moscow, Russia
关键词
PENTAGRAM MAP;
D O I
10.1088/1751-8113/48/12/125201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the construction of the relativistic Toda chains as integrable systems on the Poisson submanifolds in Lie groups beyond the case of the A-series. For the simply laced case this is just a direct generalization of the well-known relativistic Toda chains procedure, and we construct explicitly the set of Ad-invariant integrals of motion on symplectic leaves, which can be described using Poisson quivers, which are just blown-up Dynkin diagrams. We also demonstrate how to get the set of 'minimal' integrals of motion, using the co-multiplication rules for the corresponding Lie algebras. In the non-simply laced case the corresponding Bogoyavlensky-Coxeter-Toda systems are constructed using the Fock-Goncharov folding of the corresponding Poisson submanifolds. We discuss also how this procedure can be extended for the affine case beyond the A-series, and consider explicitly an example from the affine D-series.
引用
收藏
页数:26
相关论文
共 31 条
[1]  
Berenstein A, 2003, ARXIVMATH0305434
[2]   A note on quantum groups and relativistic Toda theory [J].
Fock, V ;
Marshakov, A .
NUCLEAR PHYSICS B, 1997, :208-214
[3]  
Fock V, ALGEBRAIC GEOMETRY T, P27
[4]  
Fock V., 2014, ARXIV14011606
[5]  
Fock V V, 2003, ARXIVMATH0311149
[6]  
Fomin S., 2001, ARXIVMATH0104151
[7]  
Gekhtman M., 2013, ARXIV13071020
[8]  
Gekhtman M., 2010, Cluster Algebra and Poisson Geometry (Mathematical Surveys and Monographs)
[9]  
Gekhtman M, 2013, ARXIV13082558
[10]  
Ginzburg G, 2006, PROGR MATH, V253