Reinforcement Learning for Collaborative Quadrupedal Manipulation of a Payload over Challenging Terrain

被引:5
作者
Ji, Yandong [1 ]
Zhang, Bike [2 ]
Sreenath, Koushil [2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE) | 2021年
关键词
D O I
10.1109/CASE49439.2021.9551481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated towards performing missions in unstructured environments using a group of robots, this paper presents a reinforcement learning-based strategy for multiple quadrupedal robots executing collaborative manipulation tasks. By taking target position, velocity tracking, and height adjustment into account, we demonstrate that the proposed strategy enables four quadrupedal robots manipulating a payload to walk at desired linear and angular velocities, as well as over challenging terrain. The learned policy is robust to variations of payload mass and can be parameterized by different commanded velocities. (Video(1))
引用
收藏
页码:899 / 904
页数:6
相关论文
共 50 条
[31]   Fast, Robust Quadruped Locomotion over Challenging Terrain [J].
Kalakrishnan, Mrinal ;
Buchli, Jonas ;
Pastor, Peter ;
Mistry, Michael ;
Schaal, Stefan .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :2665-2670
[32]   Collaborative Evolutionary Reinforcement Learning [J].
Khadka, Shauharda ;
Majumdar, Somdeb ;
Nassar, Tarek ;
Dwiel, Zach ;
Tumer, Evren ;
Miret, Santiago ;
Liu, Yinyin ;
Tumer, Kagan .
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
[33]   HAXSS: Hierarchical Reinforcement Learning for XSS Payload Generation [J].
Foley, Myles ;
Maffeis, Sergio .
2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, :147-158
[34]   MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains [J].
Luo, Zeren ;
Dong, Yinzhao ;
Li, Xinqi ;
Huang, Rui ;
Shu, Zhengjie ;
Xiao, Erdong ;
Lu, Peng .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) :4019-4026
[35]   A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement Learning [J].
Zhang, Hongyin ;
Yang, Shuyu ;
Wang, Donglin .
2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
[36]   Reinforcement learning for quadrupedal locomotion with design of continual-hierarchical curriculum [J].
Kobayashi, Taisuke ;
Sugino, Toshiki .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95
[37]   Self-Recovery Of Quadrupedal Robot Using Deep Reinforcement Learning [J].
Kilic, Yusuf Eren ;
Akar, Yunus Emre ;
Temeltas, Hakan ;
Sumer, Ecem .
2024 4TH INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND ARTIFICIAL INTELLIGENCE, RAAI, 2024, :1-5
[38]   Geometric Reinforcement Learning for Robotic Manipulation [J].
Alhousani, Naseem ;
Saveriano, Matteo ;
Sevinc, Ibrahim ;
Abdulkuddus, Talha ;
Kose, Hatice ;
Abu-Dakka, Fares J. .
IEEE ACCESS, 2023, 11 :111492-111505
[39]   Human Motion Control of Quadrupedal Robots using Deep Reinforcement Learning [J].
Kim, Sunwoo ;
Sorokin, Maks ;
Lee, Jehee ;
Ha, Sehoon .
ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,
[40]   Reinforcement Learning With Evolutionary Trajectory Generator: A General Approach for Quadrupedal Locomotion [J].
Shi, Haojie ;
Zhou, Bo ;
Zeng, Hongsheng ;
Wang, Fan ;
Dong, Yueqiang ;
Li, Jiangyong ;
Wang, Kang ;
Tian, Hao ;
Meng, Max Q-H .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :3085-3092