Reinforcement Learning for Collaborative Quadrupedal Manipulation of a Payload over Challenging Terrain

被引:5
作者
Ji, Yandong [1 ]
Zhang, Bike [2 ]
Sreenath, Koushil [2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE) | 2021年
关键词
D O I
10.1109/CASE49439.2021.9551481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated towards performing missions in unstructured environments using a group of robots, this paper presents a reinforcement learning-based strategy for multiple quadrupedal robots executing collaborative manipulation tasks. By taking target position, velocity tracking, and height adjustment into account, we demonstrate that the proposed strategy enables four quadrupedal robots manipulating a payload to walk at desired linear and angular velocities, as well as over challenging terrain. The learned policy is robust to variations of payload mass and can be parameterized by different commanded velocities. (Video(1))
引用
收藏
页码:899 / 904
页数:6
相关论文
共 50 条
[21]   Tension Feedback Control for Musculoskeletal Quadrupedal Locomotion over Uneven Terrain [J].
Tanaka, Hiroaki ;
Matsumoto, Ojiro ;
Kawasetsu, Takumi ;
Hosoda, Koh .
2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS 2024, 2024, :288-294
[22]   Exploring Constrained Reinforcement Learning Algorithms for Quadrupedal Locomotion [J].
Lee, Joonho ;
Schroth, Lukas ;
Klemm, Victor ;
Bjelonic, Marko ;
Reske, Alexander ;
Hutter, Marco .
2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2024), 2024, :11132-11138
[23]   Policy gradient reinforcement learning for fast quadrupedal locomotion [J].
Kohl, N ;
Stone, P .
2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, :2619-2624
[24]   Collaborative Navigation and Manipulation of a Cable-Towed Load by Multiple Quadrupedal Robots [J].
Yang, Chenyu ;
Sue, Guo Ning ;
Li, Zhongyu ;
Yang, Lizhi ;
Shen, Haotian ;
Chi, Yufeng ;
Rai, Akshara ;
Zeng, Jun ;
Sreenath, Koushil .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) :10041-10048
[25]   Learning Visual Quadrupedal Loco-Manipulation from Demonstrations [J].
He, Zhengmao ;
Lei, Kun ;
Ze, Yanjie ;
Sreenath, Koushil ;
Li, Zhongyu ;
Xu, Huazhe .
2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2024), 2024, :9102-9109
[26]   Automated Hyperparameter Tuning in Reinforcement Learning for Quadrupedal Robot Locomotion [J].
Kim, Myeongseop ;
Kim, Jung-Su ;
Park, Jae-Han .
ELECTRONICS, 2024, 13 (01)
[27]   Reinforcement Learning for Quadrupedal Locomotion: Current Advancements and Future Perspectives [J].
Gurram, Maurya ;
Uttam, Prakash Kumar ;
Ohol, Shantipal S. .
2025 9TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND ROBOTICS RESEARCH, ICMERR, 2025, :28-38
[28]   Learning Multiple-Gait Quadrupedal Locomotion via Hierarchical Reinforcement Learning [J].
Wei, Lang ;
Li, Yunxiang ;
Ai, Yunfei ;
Wu, Yuze ;
Xu, Hao ;
Wang, Wei .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2023, 24 (9) :1599-1613
[29]   Learning Multiple-Gait Quadrupedal Locomotion via Hierarchical Reinforcement Learning [J].
Lang Wei ;
Yunxiang Li ;
Yunfei Ai ;
Yuze Wu ;
Hao Xu ;
Wei Wang ;
Guoming Hu .
International Journal of Precision Engineering and Manufacturing, 2023, 24 :1599-1613
[30]   Learning Risk-Aware Quadrupedal Locomotion using Distributional Reinforcement Learning [J].
Schneider, Lukas ;
Frey, Jonas ;
Miki, Takahiro ;
Hutter, Marco .
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, :11451-11458