Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation

被引:27
作者
Baldacci, L. [1 ,2 ,3 ]
Zanotto, S. [1 ,2 ]
Biasiol, G. [4 ]
Sorba, L. [1 ,2 ]
Tredicucci, A. [5 ,6 ]
机构
[1] CNR, NEST, Ist Nanosci, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Inst Life Sci, Scuola Super St Anna, I-56127 Pisa, Italy
[4] CNR, Lab TASC, IOM, I-34149 Trieste, Italy
[5] Univ Pisa, CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[6] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
ABSORBERS;
D O I
10.1364/OE.23.009202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to extend the Coherent Perfect Absorption (CPA) phenomenology to broadband operation, the interferometric control of absorption is investigated in two-port systems without port permutation symmetry. Starting from the two-port theory of CPA treated within the Scattering Matrix formalism, we demonstrate that for all linear two-port systems with reciprocity the absorption is represented by an ellipse as function of the relative phase and intensity of the two input beams, and it is uniquely determined by the device single-beam reflectance and transmittance, and by the dephasing of the output beams. The basic properties of the phenomenon in systems without port permutation symmetry show that CPA conditions can still be found in such asymmetric devices, while the asymmetry can be beneficial for broadband operation. As experimental proof, we performed transmission measurements on a metal-semiconductor metamaterial, employing a Mach-Zehnder interferometer. The experimental results clearly evidence the elliptical feature of absorption and trace a route towards broadband operation. (C) 2015 Optical Society of America
引用
收藏
页码:9202 / 9210
页数:9
相关论文
共 25 条
[1]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[2]   Quantum optics of lossy beam splitters [J].
Barnett, SM ;
Jeffers, J ;
Gatti, A ;
Loudon, R .
PHYSICAL REVIEW A, 1998, 57 (03) :2134-2145
[3]   Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches [J].
Bruck, Roman ;
Muskens, Otto L. .
OPTICS EXPRESS, 2013, 21 (23) :27652-27661
[4]   Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system [J].
Cai, M ;
Painter, O ;
Vahala, KJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (01) :74-77
[5]  
Chew W. C., 1995, WAVES FIELDS INHOMOG, V522
[6]   Coherent Perfect Absorbers: Time-Reversed Lasers [J].
Chong, Y. D. ;
Ge, Li ;
Cao, Hui ;
Stone, A. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (05)
[7]   Guided-mode resonant coherent light absorbers [J].
Giese, J. A. ;
Yoon, J. W. ;
Wenner, B. R. ;
Allen, J. W. ;
Allen, M. S. ;
Magnusson, R. .
OPTICS LETTERS, 2014, 39 (03) :486-488
[8]   Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization [J].
Granet, G ;
Guizal, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05) :1019-1023
[9]  
Haus H. A., 1984, WAVES FIELDS OPTOELE
[10]  
Huang S., 2014, ARXIV14027146