Strong solutions to stochastic wave equations with values in Riemannian manifolds

被引:34
作者
Brzezniak, Zdzislaw [1 ]
Ondrejat, Martin [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague, Czech Republic
关键词
stochastic wave equation; geometric wave equation;
D O I
10.1016/j.jfa.2007.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a d-dimensional compact Riemannian manifold. We prove existence of a unique global strong solution of the stochastic wave equation D-t partial derivative(t)u = D-x partial derivative(x)u + Y-u (partial derivative(t)u, partial derivative(x)u) V, where Y is a C-1-smooth transformation and W is a spatially homogeneous Wiener process on R whose spectral measure has finite moments up to order 2. (c) 2007 Published by Elsevier Inc.
引用
收藏
页码:449 / 481
页数:33
相关论文
共 47 条
[1]  
[Anonymous], 1993, DIFFER INTEGRAL EQU
[2]  
[Anonymous], 1968, MATH SCI ENG
[3]  
Brzeniak Z., 2000, Methods Funct. Anal. Topol, V6, P43
[4]  
BRZEZNIAK Z, UNPUB STOCHASTIC NON
[5]   BARRIER PROBLEMS FOR VIBRATING STRING [J].
CABANA, EM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 22 (01) :13-&
[6]   RANDOM NONLINEAR-WAVE EQUATIONS - PROPAGATION OF SINGULARITIES [J].
CARMONA, R ;
NUALART, D .
ANNALS OF PROBABILITY, 1988, 16 (02) :730-751
[7]   RANDOM NON-LINEAR WAVE-EQUATIONS - SMOOTHNESS OF THE SOLUTIONS [J].
CARMONA, R ;
NUALART, D .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :469-508
[8]  
Carroll A., 1999, THESIS U HULL
[9]  
Cazenave T, 1998, ANN I H POINCARE-PHY, V68, P315
[10]  
CHOJNOWSKAMICHA.A, 1979, BANACH CTR PUBL, V5