Theoretical and experimental characterization of entropic inequalities

被引:0
作者
Bovino, Fabio Antonio [1 ]
机构
[1] Quantum Opt Lab ElsagDatamat, I-16154 Genoa, Italy
来源
ADVANCES IN NANOPHOTONICS II | 2007年 / 959卷
关键词
entanglement; bell inequalities; entropic inequalities; BELL INEQUALITIES; ENTANGLEMENT; SEPARABILITY; INFORMATION; PHOTONS; STATES;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nonlinear inequalities based on the quadratic Renyi entropy for mixed two-qubit states are characterized on the Entropy-Concurrence plane. This class of inequalities is stronger than Clauser-Horne-Shimony-Holt (CHSH) inequalities and, in particular, are violated "in toto" by the set of Type I Maximally-Entangled-Mixture States (MEMS I). Renyi entropy is experimentally obtained by local measurements on two pairs of polarization-entangled photons. The novel "phase marking" technique allows the selection of uncorrupted outcomes even with nondeterministic sources of entangled photons. Experimental data demonstrate the violation of entropic inequalities which are an example of nonlinear entanglement witnesses.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 35 条
[21]   Information-theoretic aspects of inseparability of mixed states [J].
Horodecki, R ;
Horodecki, M .
PHYSICAL REVIEW A, 1996, 54 (03) :1838-1843
[22]  
KIM YH, 2004, PHYS REV LETT, V92
[23]   NEW HIGH-INTENSITY SOURCE OF POLARIZATION-ENTANGLED PHOTON PAIRS [J].
KWIAT, PG ;
MATTLE, K ;
WEINFURTER, H ;
ZEILINGER, A ;
SERGIENKO, AV ;
SHIH, YH .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4337-4341
[24]   PROOF OF STRONG SUBADDITIVITY OF QUANTUM-MECHANICAL ENTROPY [J].
LIEB, EH ;
RUSKAI, MB .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1938-1941
[25]  
LUKASZ D, 2005, PHYS REV A, V72
[26]   Maximizing the entanglement of two mixed qubits [J].
Munro, WJ ;
James, DFV ;
White, AG ;
Kwiat, PG .
PHYSICAL REVIEW A, 2001, 64 (03) :4
[27]  
NIELSEN MA, 1998, THESIS U NEW MEXICO
[28]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415
[29]  
RAJAGOPAL AK, 2001, QUANTPH0106050
[30]   Discussion of probability relations between separated systems [J].
Schrodinger, E .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 :555-563