Alternative GEE estimation procedures for discrete longitudinal data

被引:4
|
作者
Park, T
Davis, CS
Li, N
机构
[1] Hankuk Univ Foreign Studies, Kyungki Do, South Korea
[2] Natl Inst Child Hlth & Human Dev, Bethesda, MD USA
[3] Univ Iowa, Iowa City, IA USA
[4] WESTAT, Rockville, MD USA
关键词
generalized estimating equations; quasi-likelihood; pearson residuals; anscombe residuals; deviance residuals;
D O I
10.1016/S0167-9473(98)00039-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Liang and Zeger (1986) proposed a generalized estimating equations (GEE) approach to the analysis of longitudinal data. Liang and Zeger's method consists of two estimation steps. One is a quasi-likelihood method for estimating regression parameters. The other is a robust moment method for estimating correlation parameters which incorporates the dependence among outcomes. The estimation of correlation parameters is based upon the Pearson residuals, which are implicitly assumed to be normally distributed. However, the normality assumption of Pearson residuals does not hold for discrete responses such as Poisson and binary outcomes. Instead of Pearson residuals, we consider two alternative types of residuals to estimate correlation parameters: Anscombe and deviance residuals. For Poisson and binary outcomes, the three methods are compared through simulation studies. Our results show that the choice of residual has little or no effect on the properties of the resulting estimates. The simple Pearson residual is thus recommended. (C) 1998 Published by Elsevier Science B.V. All. rights reserved.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [31] An alternative approach to the analysis of longitudinal data via generalized estimating equations
    Chaganty, NR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 63 (01) : 39 - 54
  • [32] Efficient semiparametric estimation via Cholesky decomposition for longitudinal data
    Chen, Ziqi
    Shi, Ning-Zhong
    Gao, Wei
    Tang, Man-Lai
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3344 - 3354
  • [33] Covariance estimators for generalized estimating equations (GEE) in longitudinal analysis with small samples
    Wang, Ming
    Kong, Lan
    Li, Zheng
    Zhang, Lijun
    STATISTICS IN MEDICINE, 2016, 35 (10) : 1706 - 1721
  • [34] Robust estimation of covariance parameters in partial linear model for longitudinal data
    Qin, Guoyou
    Zhu, Zhongyi
    Fung, Wing K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 558 - 570
  • [35] Efficient estimation in the partially linear quantile regression model for longitudinal data
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 824 - 850
  • [36] Goodness-of-fit tests for GEE with correlated binary data
    Pan, W
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 101 - 110
  • [37] Analyzing family data: A GEE approach for substance use researchers
    Homish, Gregory G.
    Edwards, Ellen P.
    Eiden, Rina D.
    Leonard, Kenneth E.
    ADDICTIVE BEHAVIORS, 2010, 35 (06) : 558 - 563
  • [38] Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
    Stuart R. Lipsitz
    Garrett M. Fitzmaurice
    Roger D. Weiss
    Psychometrika, 2020, 85 : 890 - 904
  • [39] A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses
    Zhang, H.
    Yu, Q.
    Feng, C.
    Gunzler, D.
    Wu, P.
    Tu, X. M.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (09) : 2067 - 2079
  • [40] A Pseudo-GEE Approach to Analyzing Longitudinal Surveys under Imputation for Missing Responses
    Carrillo, Ivan A.
    Chen, Jiahua
    Wu, Changbao
    JOURNAL OF OFFICIAL STATISTICS, 2011, 27 (02) : 255 - 277