Alternative GEE estimation procedures for discrete longitudinal data

被引:4
|
作者
Park, T
Davis, CS
Li, N
机构
[1] Hankuk Univ Foreign Studies, Kyungki Do, South Korea
[2] Natl Inst Child Hlth & Human Dev, Bethesda, MD USA
[3] Univ Iowa, Iowa City, IA USA
[4] WESTAT, Rockville, MD USA
关键词
generalized estimating equations; quasi-likelihood; pearson residuals; anscombe residuals; deviance residuals;
D O I
10.1016/S0167-9473(98)00039-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Liang and Zeger (1986) proposed a generalized estimating equations (GEE) approach to the analysis of longitudinal data. Liang and Zeger's method consists of two estimation steps. One is a quasi-likelihood method for estimating regression parameters. The other is a robust moment method for estimating correlation parameters which incorporates the dependence among outcomes. The estimation of correlation parameters is based upon the Pearson residuals, which are implicitly assumed to be normally distributed. However, the normality assumption of Pearson residuals does not hold for discrete responses such as Poisson and binary outcomes. Instead of Pearson residuals, we consider two alternative types of residuals to estimate correlation parameters: Anscombe and deviance residuals. For Poisson and binary outcomes, the three methods are compared through simulation studies. Our results show that the choice of residual has little or no effect on the properties of the resulting estimates. The simple Pearson residual is thus recommended. (C) 1998 Published by Elsevier Science B.V. All. rights reserved.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [1] Small sample GEE estimation of regression parameters for longitudinal data
    Paul, Sudhir
    Zhang, Xuemao
    STATISTICS IN MEDICINE, 2014, 33 (22) : 3869 - 3881
  • [2] GEE-Smoothing Spline for Semiparametric Estimation of Longitudinal Binary Data
    Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    Krishnarajah, Isthrinayagy S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 18 (S10): : 82 - 95
  • [3] GEE-smoothing spline for semiparametric estimation of longitudinal binary data
    Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    Krishnarajah, Isthrinayagy S.
    International Journal of Applied Mathematics and Statistics, 2010, 18 (S10): : 82 - 95
  • [4] Comment on "Small sample GEE estimation of regression parameters for longitudinal data'
    Lunardon, N.
    Scharfstein, D.
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3596 - 3600
  • [5] Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method
    Leung, Denis H. Y.
    Wang, You-Gan
    Zhu, Min
    BIOSTATISTICS, 2009, 10 (03) : 436 - 445
  • [6] Analysis of censored discrete longitudinal data: Estimation of mean response
    Gunnes, Nina
    Farewell, Daniel M.
    Seierstad, Taral G.
    Aalen, Odd O.
    STATISTICS IN MEDICINE, 2009, 28 (04) : 605 - 624
  • [7] GEE with Gaussian estimation of the correlations when data are incomplete
    Lipsitz, SR
    Molenberghs, G
    Fitzmaurice, GM
    Ibrahim, J
    BIOMETRICS, 2000, 56 (02) : 528 - 536
  • [8] Analyzing Longitudinal Data Using Gee-Smoothing Spline
    Ibrahim, Noor Akma
    Suliadi
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 26 - +
  • [9] Weighted estimating equation: modified GEE in longitudinal data analysis
    Tianqing Liu
    Zhidong Bai
    Baoxue Zhang
    Frontiers of Mathematics in China, 2014, 9 : 329 - 353
  • [10] On the use of working correlation matrices in the GEE approach for longitudinal data
    Park, T
    Shin, DY
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1999, 28 (04) : 1011 - 1029