A NOTE ON SCHMIDT'S CONJECTURE

被引:0
作者
Poulakis, Dimitrios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
elliptic curve; discriminant; quartic number field; INTEGER POINTS; CURVES; NUMBER; UNITS;
D O I
10.1017/S0004972717000375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schmidt ['Integer points on curves of genus 1 ', Compos. Math. 81 (1992), 33-59] conjectured that the number of integer points on the elliptic curve defined by the equation y(2) = x(3) + ax(2) + bx + c, with a,b,c is an element of Z, is O-is an element of(max {1,vertical bar a vertical bar ,vertical bar b vertical bar,vertical bar c vertical bar}(is an element of)) for any is an element of > 0. On the other hand, Duke ['Bounds for arithmetic multiplicities', Proc. Int. Congress Mathematicians, Vol. II (1998), 163-172] conjectured that the number of algebraic number fields of given degree and discriminant D is O-is an element of (vertical bar D vertical bar(is an element of)). In this note, we prove that Duke's conjecture for quartic number fields implies Schmidt's conjecture. We also give a short unconditional proof of Schmidt's conjecture for the elliptic curve y(2) = x(3) + ax.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 50 条
  • [1] A note on Lang's conjecture for quotients of bounded domains
    Boucksom, Sebastien
    Diverio, Simone
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2021, 5
  • [2] A Note on Toeplitz' Conjecture
    Pettersson, Ville H.
    Tverberg, Helge A.
    Ostergard, Patric R. J.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 722 - 728
  • [3] A note on Bass? conjecture
    Avelar, D. V.
    Martinez, F. E. Brochero
    Ribas, S.
    JOURNAL OF NUMBER THEORY, 2023, 249 : 462 - 469
  • [4] A Note on the Erdos Matching Conjecture
    Martin, Ryan R.
    Patkos, Balazs
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2025,
  • [5] A Note on Iitaka's Conjecture C3,1 in Positive Characteristics
    Zhang, Lei
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 689 - 704
  • [6] A note on the ErdAs-Straus conjecture
    Subburam, S.
    Togbe, Alain
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) : 43 - 49
  • [7] A note on an effective bound for the gonality conjecture
    Duncan, Alexander S.
    Niu, Wenbo
    Park, Jinhyung
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [8] SOLUTION TO A CONJECTURE OF SCHMIDT AND TULLER ON ONE-DIMENSIONAL PACKINGS AND COVERINGS
    Frankl, N. O. R. A.
    Kupavskii, A. N. D. R. E. Y.
    Sagdeev, A. R. S. E. N., II
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2353 - 2362
  • [9] Lang's height conjecture and Szpiro's conjecture
    Silverman, Joseph H.
    NEW YORK JOURNAL OF MATHEMATICS, 2010, 16 : 1 - 12
  • [10] On exceptional sets in Manin's conjecture
    Lehmann, Brian
    Tanimoto, Sho
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)