Accelerating Viterbi algorithm on graphics processing units

被引:8
|
作者
Hanif, Muhammad Kashif [1 ]
Zimmermann, Karl-Heinz [2 ]
机构
[1] Govt Coll Univ, Dept Comp Sci, Faisalabad, Pakistan
[2] Hamburg Univ Technol, Inst Embedded Syst, D-21071 Hamburg, Germany
关键词
Hidden Markov model; Viterbi algorithm; Matrix product; Graphics processing unit; CUDA; IMPLEMENTATION; GPU;
D O I
10.1007/s00607-017-0557-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Viterbi algorithm is used in different scientific applications including biological sequence alignment, speech recognition, and probabilistic inference. However, high computational complexity of the Viterbi algorithm is a major concern. Accelerating the Viterbi algorithm is important, especially when the number of states or the length of the sequences increase significantly. In this paper, a parallel solution to improve the performance of Viterbi algorithm is presented. This is achieved by formulating a matrix product based algorithm. This algorithm has been mapped to a NVIDIA graphics processing unit. The performance for different parameters and realizations are compared. The results depicts matrix product is not a viable option for small number of states. However, matrix product solution using shared memory for large number of states gains good performance when compared with the serial version.
引用
收藏
页码:1105 / 1123
页数:19
相关论文
共 50 条
  • [1] Accelerating Viterbi algorithm on graphics processing units
    Muhammad Kashif Hanif
    Karl-Heinz Zimmermann
    Computing, 2017, 99 : 1105 - 1123
  • [2] Accelerating Forward Algorithm for Stochastic Automata on Graphics Processing Units
    Sarwar, Muhammad Umer
    Hanif, Muhammad Kashif
    Talib, Ramzan
    Aziz, Muhammad Haris
    IEEE ACCESS, 2020, 8 : 32270 - 32279
  • [3] Accelerating NTRU Encryption with Graphics Processing Units
    Bai, Tianyu
    Davis, Spencer
    Li, Juanjuan
    Gu, Ying
    Jiang, Hai
    INTERNATIONAL JOURNAL OF NETWORKED AND DISTRIBUTED COMPUTING, 2014, 2 (04) : 250 - 258
  • [4] Accelerating parameter inference with graphics processing units
    Wysocki, D.
    O'Shaughnessy, R.
    Lange, Jacob
    Fang, Yao-Lung L.
    PHYSICAL REVIEW D, 2019, 99 (08)
  • [5] Accelerating k-NN Classification Algorithm Using Graphics Processing Units
    Selvaluxmiy, S.
    Kumara, T. N.
    Keerthanan, P.
    Velmakivan, R.
    Ragel, R.
    Deegalla, S.
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS): INTEROPERABLE SUSTAINABLE SMART SYSTEMS FOR NEXT GENERATION, 2016,
  • [6] Accelerating an Imaging Spectroscopy Algorithm for Submerged Marine Environments Using Graphics Processing Units
    Goodman, James A.
    Kaeli, David
    Schaa, Dana
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (03) : 669 - 676
  • [7] Accelerating Physical Simulations Using Graphics Processing Units
    Hoffmann, Karl Heinz
    Hofmann, Michael
    Lang, Jens
    Rnger, Gudula
    Seeger, Steffen
    IT-INFORMATION TECHNOLOGY, 2011, 53 (02): : 49 - 59
  • [8] Accelerating Gate Sizing Using Graphics Processing Units
    Shi, Bing
    Zhang, Yufu
    Srivastava, Ankur
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (01) : 160 - 164
  • [9] Accelerating frequent itemset mining on graphics processing units
    Zhang, Fan
    Zhang, Yan
    Bakos, Jason D.
    JOURNAL OF SUPERCOMPUTING, 2013, 66 (01): : 94 - 117
  • [10] Accelerating Molecular Dynamic Simulation on Graphics Processing Units
    Friedrichs, Mark S.
    Eastman, Peter
    Vaidyanathan, Vishal
    Houston, Mike
    Legrand, Scott
    Beberg, Adam L.
    Ensign, Daniel L.
    Bruns, Christopher M.
    Pande, Vijay S.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) : 864 - 872