On the concavity of Dirichlet's eta function and related functional inequalities

被引:12
作者
Alzer, Horst [1 ]
Kwong, Man Kam [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
关键词
Dirichlet's eta function; Concavity; Functional inequalities; ZETA-FUNCTION;
D O I
10.1016/j.jnt.2014.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the strict concavity of Dirichlet's eta function eta(s) = Sigma(infinity)(j=1) (-1)(j-1)/j(n) on (0,infinity). This extends a result of Wang, who proved in 1998 that eta is strictly logarithmically concave on (0, infinity). Several new inequalities satisfied by eta are also presented. Among them is the double-inequality log 2 < eta(x)(1/root x)eta(y)(1/root y)/eta(xy)(1/root xy) < 1, for all x, y is an element of (1, infinity). Both bounds are sharp. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 196
页数:25
相关论文
共 20 条
[11]  
Petrovic M., 1932, Publ. Math. Univ. Belgrade, V1, P149
[12]  
Sheftel A., 2010, INT J PURE APPL MATH, V60, P409
[13]   A COMPANION INEQUALITY TO JENSEN INEQUALITY [J].
SLATER, ML .
JOURNAL OF APPROXIMATION THEORY, 1981, 32 (02) :160-166
[14]   Double integrals for Euler's constant and ln 4/π and an analog of Hadjicostas's formula [J].
Sondow, J .
AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (01) :61-65
[15]   Zeros of the alternating zeta function on the line R(s)=1 [J].
Sondow, J .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (05) :435-437
[16]   ANALYTIC CONTINUATION OF RIEMANN ZETA-FUNCTION AND VALUES AT NEGATIVE INTEGERS VIA EULER TRANSFORMATION OF SERIES [J].
SONDOW, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) :421-424
[17]   A simple counterexample to Havil's "reformulation" of the Riemann Hypothesis [J].
Sondow, Jonathan .
ELEMENTE DER MATHEMATIK, 2012, 67 (02) :61-67
[18]  
Titchmarsh E.C., 1951, The theory of the Riemann zeta-function
[19]  
Wang K. C., 1998, J CHANGSHA COMM U, V14, P1
[20]  
Wright, 1956, MATH GAZ, V40, P217, DOI DOI 10.2307/3608827